AQA Maths Pure Core 3 Mark Scheme Pack 2006-2015

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a) (b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sec ^{2} 3 x$ Alternative Use of product/Quotient rule $\begin{equation*} \frac{3 \cos ^{2} 3 x+3 \sin ^{2} 3 x}{\cos ^{2} 3 x} \tag{M1} \end{equation*}$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x+1) 3-2(3 x+1)}{(2 x+1)^{2}}=\frac{6 x+3-6 x-2}{(2 x+1)^{2}} \\ & =\frac{1}{(2 x+1)^{2}} \end{aligned}$ Alternative $\begin{align*} & -2(3 x+1)(2 x+1)^{-2}+3(2 x+1)^{-1} \\ & =\frac{1}{(2 x+1)^{2}} \tag{M1A1} \end{align*}$	M1 A1 M1 A1 A1	2 3	for $\sec 3 x \quad \mathrm{SC} / 3 \sec ^{2} x \quad \mathrm{~B} 1$ Good attempt Correct use of quotient rule AG (no errors) Alternative: $\begin{array}{ll} y=\frac{3}{2}-\frac{1}{2}(2 x+1)^{-1} & \text { M1 } \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{-2} & \text { A1 } \tag{A1}\\ =\frac{1}{(2 x+1)^{2}} & \text { AG } \end{array}$
	Total		5	
2	$\int_{1}^{3} \frac{1}{\sqrt{1+x^{3}}} \mathrm{~d} x$$x$ y 1 $0.707(1)$ 1.5 $0.478(1)$ 2 $0.333(3)$ 2.5 $0.245(3)$ 3 $0.189(0)$$\begin{aligned} & \mathrm{A}=\frac{1}{3} \times 0.5\left[\begin{array}{l} y(1)+y(3)+ \\ 4(y(1.5)+y(2.5))+2(y(2)) \end{array}\right] \\ & =0.743 \end{aligned}$	B1 B1 M1 A1	4	all correct $\left\{\begin{array}{c}\text { SC B1 for all correct } \\ \text { expressions but } \\ \text { wrongly evaluated }\end{array}\right.$ use of Simpson's rule
	Total		4	

MPC3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 4(a) \& \[
\begin{aligned}
\& 2 \operatorname{cosec}^{2} x=5(1-\cot x) \\
\& 2+2 \cot ^{2} x=5-5 \cot x \\
\& 2 \cot ^{2} x+5 \cot x-3=0 \\
\& (2 \cot x-1)(\cot x+3)=0 \\
\& \\
\& \cot x=\frac{1}{2},-3 \\
\& \tan x=2,-\frac{1}{3} \\
\& \left.\begin{array}{l}
x=1.1,-2.0 \\
x=-0.3,2.8
\end{array}\right\} \text { AWRT }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1 \\
B1 \\
B1
\end{tabular} \& 2

2
2

3 \& | use of $\operatorname{cosec}^{2} x=1+\cot ^{2} x$ AG |
| :--- |
| or $2+5 t-3 t^{2}=0$ Or in $\tan x$ $(2-t)(1+3 t)=0$ |
| AG |

\hline \& Total \& \& 7 \&

\hline 5(a)
(b)
(c)

(d) \& \[
$$
\begin{aligned}
& a=-8 \\
& \mathrm{e}^{2 x}-9=0 \\
& \mathrm{e}^{2 x}=9 \\
& 2 x=\ln 9 \\
& x=\ln 3 \\
& \left(\mathrm{e}^{2 x}-9\right)^{2}=\mathrm{e}^{4 x}-18 \mathrm{e}^{2 x}+81 \\
& \mathrm{~V}=\pi \int y^{2}(\mathrm{~d} x) \\
& =(\pi) \int \mathrm{e}^{4 x}-18 \mathrm{e}^{2 x}+81 \mathrm{~d} x \\
& =(\pi)\left[\frac{e^{4 x}}{4}-9 \mathrm{e}^{2 x}+81 x\right]_{0}^{\ln 3} \\
& =(\pi)\left[\left(\frac{\mathrm{e}^{\ln 81}}{4}-9 \mathrm{e}^{\ln 9}+81 \ln 3\right)-\left(\frac{1}{4}-9\right)\right] \\
& =\pi[81 \ln 3-52] \\
& -u, 8
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| B1 |
| B1 |
| M1 |
| M1 |
| A1 |
| m1 |
| A1 |
| M1 |
| A1F | \& | 3 |
| :--- |
| 6 |
| 2 | \& | AG Condone verification |
| :--- |
| AG |
| 1^{ST} or $2^{\text {nd }}$ term correct All correct |
| Attempt at limits with $\ln 3$ |
| Modulus graph |
| All correct |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

MPC3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$($ Range of f$) \geqslant 0$	B1	1	
(b)(i)	$\operatorname{fg}(x)=\frac{1}{(x+2)^{2}}$	B1	1	OE Maybe in part (ii)
(ii)	$\frac{1}{(x+2)^{2}}=4$			
	$(x+2)^{2}=\frac{1}{4}$	M1		$\begin{aligned} & \text { Or } \\ & 4(x+2)^{2}=1 \end{aligned}$
	$x+2=(\pm) \frac{1}{2}$	M1		$(2 x+5)(2 x+3)=0$
	$x=-\frac{5}{2},-\frac{3}{2}$	A1 A1	4	
(c)(i)(ii)	Not one to one	E1	1	OE
	$x=\frac{1}{y+2}$	M1		$x \Leftrightarrow y$
	$y+2=\frac{1}{x}$	M1		Attempt to isolate
	$y=\frac{1}{x}-2 \quad\left(\frac{1-2 x}{x}\right)$	A1	3	
			10	

Q	Solution	Marks	Total	Comments
9(a)	$y=x^{-2} \ln x$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-2} \frac{1}{x}-2 x^{-3} \ln x$	$\begin{gathered} \text { M1 } \\ \text { A1 A1 } \end{gathered}$		Use of product or quotient each term
	$=\frac{1-2 \ln x}{x^{3}}$	A1	4	Convincing argument $x^{-2} \times \frac{1}{x}=x^{-3}$ AG
(b)	$\begin{array}{lll} \int x^{-2} \ln x \mathrm{~d} x & u=\ln x & \mathrm{~d} v=x^{-2} \\ & \mathrm{~d} u=\frac{1}{x} & v=-x^{-1} \end{array}$	M1 A1		Attempt at integration by parts
	$\int=-\frac{1}{x} \ln x+\int x^{-2} \mathrm{~d} x$	A1		
	$=-\frac{1}{x} \ln x-\frac{1}{x}(+\mathrm{c})$	A1	4	
(c)(i)	$\begin{aligned} & \text { At } A, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ & 1-2 \ln x=0 \end{aligned}$			
	$\ln x=\frac{1}{2}$	M1		Attempt at $\ln x=k$
	$x=\mathrm{e}^{\frac{1}{2}}$	A1	2	
(ii)	$R=\left[-\frac{1}{x}(\ln x+1)\right]_{1}^{5}$	M1		$R=[\operatorname{Their}(\mathrm{b})]_{1}^{5}$
	$=-\frac{1}{5}(\ln 5+1)+(\ln 1+1)$	A1		OE
	$=\frac{1}{5}(4-\ln 5)$	A1	3	convincing argument; AG
	Total		13	
	TOTAL		75	

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous incorrect result	MC
CAO	correct answer only	MR
CSO	correct solution only	mis-copy
AWFW	anything which falls within	mis-read
AWRT	anything which rounds to	required accuracy
ACF	any correct form	FW
AG	answer given	further work
SC	special case	FIW

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

MPC3 (cont)

Q	Solution	Marks	Total	Comments
3(a) (b) (c)	$\begin{aligned} & \sec x=5 \\ & \cos x=0.2 \\ & x=1.37,4.91 \quad \text { AWRT } \\ & \tan ^{2} x=3 \sec x+9 \\ & \sec ^{2} x-1=3 \sec x+9 \\ & \sec ^{2} x-3 \sec x-10=0 \\ & \\ & (\sec x-5)(\sec x+2)=0 \\ & \sec x=5,-2 \\ & \cos x=0.2,-0.5 \\ & x=1.37,4.91 \\ & 2.09,4.19 \end{aligned}$	M1 A1A1 M1 A1 M1 A1 B1F A1	3	for using $\sec ^{2} x=1+\tan ^{2} x$ OE AG or use of formula (attempt) any 2 correct or ft their 2 answers in (a) all 4 correct, no extras
	Total		9	
4(a)(i) (ii) (b)(i) (ii)	$\begin{aligned} & x=2 x-4, x=4 \\ & -x=2 x-4 \\ & x=\frac{4}{3} \end{aligned}$ Alternative: $\begin{aligned} & x^{2}=(2 x-4)^{2} \\ & x=4, \frac{4}{3} \\ & \frac{4}{3}<x<4 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	1	$y=\|x\|$ 2 branches mod graph $x>0$ for $y=0$ for 2,4 OE one value only $\frac{4}{3}, 4(\mathrm{ft})$ identified as extremes CAO
	Total		8	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} \therefore \int \ln x & =1(\ln 1.5+\ln 2.5+\ln 3.5+\ln 4.5) \\ & =4.08 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	use of $1.5,2.5, \ldots ; 3$ or 4 correct x values AWFW 4 to 4.2 CAO
(b)(i)	$\begin{aligned} y & =x \ln x \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =x \times \frac{1}{x}+\ln x \\ & =\ln x+1 \end{aligned}$	M1 A1	2	use of product rule (only differentiating, 2 terms with + sign)
(ii)	$\begin{aligned} & \int(\ln x+1) \mathrm{d} x=x \ln x \\ & \int \ln x \mathrm{~d} x=x \ln x-x(+c) \end{aligned}$	M1 A1	2	OE; attempt at parts with $u=\ln x$
(iii)	$\begin{aligned} & \int_{1}^{5} \ln x \mathrm{~d} x=[x \ln x-x]_{1}^{5} \\ & =(5 \ln 5-5)-(1 \ln 1-1) \\ & 5 \ln 5-4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	correct substitution of limits into their (ii) provided $\ln x$ is involved ISW
	Total		9	
7(a)	$\begin{aligned} z & =\frac{\sin x}{\cos x} \\ \frac{\mathrm{~d} z}{\mathrm{~d} x} & =\frac{\cos x \cos x-\sin x(-\sin x)}{\cos ^{2} x} \\ & =\frac{1}{\cos ^{2} x} \\ & =\sec ^{2} x \end{aligned}$	M1 A1 A1	3	use of quotient rule $\left(\frac{ \pm \cos ^{2} x \pm \sin ^{2} x}{\cos ^{2} x}\right)$ AG (be convinced)
(b)		M1		correct shape including asymptotic behaviour and symmetrical about $x=0$ and $y>0$
		A1	2	use of 1
(c)	$V=(k) \int \sec ^{2} x \mathrm{~d} x$	M1		
	$=(k)[\tan x]_{0}^{1}$	A1		
	$=4.89$	A1	3	CAO
	Total		8	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\mathrm{f}(x)=2 \mathrm{e}^{3 x}-1$			
(b)	Range: $\mathrm{f}(x)>-1$ (or $y>-1$ or $\mathrm{f}>-1$)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	for -1 only exactly correct
	$y=2 \mathrm{e}^{3 x}-1$			
	$x=2 \mathrm{e}^{3 y}-1$	M1		$x \leftrightarrow y$
	$2 \mathrm{e}^{3 y}=x+1$			
	$\mathrm{e}^{3 y}=\frac{x+1}{2}$	M1		attempt to isolate
	$y=\frac{1}{3} \ln \left(\frac{x+1}{2}\right)$	A1	3	all correct with no error AG (be convinced)
(c)	$\mathrm{f}^{\prime-1}(x)=\frac{1}{3}\left(\frac{2}{x+1}\right) \times \frac{1}{2} \quad$ OE	M1		for differentiation of $\ln ; \frac{k}{\text { their }(x \pm 1)}$
	$\mathrm{f}^{\prime-1}(x)=\frac{1}{3}(x+1) \times \frac{1}{2}$	A1		for $\frac{1}{2}$
		A1		all correct
	$x=0$			
	$\mathrm{f}^{\prime-1}(x)=\frac{1}{3}$	A1	4	CSO
	Alternative			
	$\mathrm{f}^{-1}(x)=\frac{1}{3} \ln (x+1)-\frac{1}{3} \ln 2$	M1A1		
	$\mathrm{f}^{\prime-1}(x)=\frac{1}{3(x+1)}$	A1		
	$\mathrm{f}^{\prime-1}(0)=\frac{1}{3}$	A1		CSO
	Total		9	

MPC3 (cont)

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

MPC3 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\begin{aligned} & 2\left(\operatorname{cosec}^{2} x-1\right)+5 \operatorname{cosec} x=10 \\ & 2 \operatorname{cosec}^{2} x-2+5 \operatorname{cosec} x-10=0 \\ & 2 \operatorname{cosec}^{2} x+5 \operatorname{cosec} x-12=0 \\ & (2 \operatorname{cosec} x-3)(\operatorname{cosec} x+4)=0 \\ & \operatorname{cosec} x=\frac{3}{2} \text { or }-4 \\ & \sin x=\frac{2}{3} \text { or }-\frac{1}{4} \\ & (\theta-0.1)=0.73,2.41,-0.25,-2.89 \\ & \theta=0.83,2.51,-0.15,-2.79 \quad \text { AWRT } \end{aligned}$	M1 A1 M1 A1 A1 B1 B1 B1	3 3	AG Attempt to solve Condone answers with no method shown AG 2 correct values, may be implied later $(41.8,138.2,-165.5,-14.5)$ 2 correct answers +2 correct answers and no extra within range
	Total		8	
6(a)(i) (ii) (b)(i) (ii)	$\begin{aligned} & y=\left(4 x^{2}+3 x+2\right)^{10} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=10\left(4 x^{2}+3 x+2\right)^{9}(8 x+3) \\ & y=x^{2} \tan x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2} \sec ^{2} x+2 x \tan x \\ & x=2 y^{3}+\ln y \\ & \frac{\mathrm{~d} x}{\mathrm{~d} y}=6 y^{2}+\frac{1}{y} \\ & \mathrm{At}(2,1) \\ & \frac{\mathrm{d} x}{\mathrm{~d} y}=6+1=7 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{7} \\ & (y-1)=\frac{1}{7}(x-2) \end{aligned}$	M1 A1 M1 A1 B1 M1 A1 $\sqrt{ }$ A1	2 2 1 3	For $\mathrm{f}(x)()^{9}$ where $\mathrm{f}(x) \neq k$ and is linear Product rule May be implied OE
	Total		8	

MPC3 (cont)

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^1]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & y=\ln x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x} \end{aligned}$	B1	1	penalise $+c$ once on 1(a) or 2(a)
(b)	$\begin{aligned} & y=(x+1) \ln x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=(x+1) \times \frac{1}{x}+\ln x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	product rule
(c)	$\begin{aligned} & y=(x+1) \ln x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x}+1+\ln x \\ & x=1: \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=1+1=2 \end{aligned}$	M1		substitute $x=1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$\text { Grad normal }=-\frac{1}{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		$\begin{aligned} & \text { use of } m_{1} m_{2}=-1 \\ & \text { CSO } \end{aligned}$
	$y=-\frac{1}{2}(x-1)$	A1	4	OE
	Total		7	
2(a)	$4(x-1)^{3}$ or in expanded form	B1	1	allow $-4(1-x)^{3}$
(b)	$V=4(\pi) \int_{2}^{4}(x-1)^{3} \mathrm{~d} x$	M1		$(\pi) \int y^{2} \mathrm{~d} x$
	$=4 \pi\left[\frac{(x-1)^{4}}{4}\right]_{2}^{4}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \end{aligned}$		$k(x-1)^{4}(\pi)$ or in expanded form correct substitution of limits into $k(x-1)^{4}$
	$=\pi(81-1)=80 \pi$	A1	4	CAO
(c)	Translate	E1		
	$\binom{1}{0}$	B1		OE
	Stretch (I) SF 2 (II) // y axis (III)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	for I and (II or III) for I and II and III
	Total		9	

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
7(a)(i) \\
(ii) \\
(b)(i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& y=\left(x^{2}-3\right) \mathrm{e}^{x} \\
\& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(x^{2}-3\right) \mathrm{e}^{x}+2 x \mathrm{e}^{x} \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(x^{2}-3\right) \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 \mathrm{e}^{x} \\
\& \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\& \Rightarrow \mathrm{e}^{x}\left(x^{2}+2 x-3\right)=0 \\
\& \mathrm{e}^{x}(x+3)(x-1)=0 \\
\& \therefore x=-3,1 \\
\& \\
\& x=-3 y^{\prime \prime}=-4 \mathrm{e}^{x} \max \quad(-0.2) \\
\& x=1 \quad y^{\prime \prime}=4 \mathrm{e}^{x} \min \quad(10.9)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
m1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
2 \\
4 \\
2
\end{tabular} \& \begin{tabular}{l}
product rule \\
product rule from their \(\frac{\mathrm{d} y}{\mathrm{~d} x}\)
\[
\mathrm{e}^{x} \mathrm{f}(x)=0 \text { from } \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\] \\
attempt at factorising or use of formula \\
first correct solution second correct solution, and no others SC No working shown: \\
\(x=-3 \quad\) B2, \(\quad x=1 \quad\) B2 \\
Condone slip
\end{tabular} \\
\hline \& Total \& \& 10 \& \\
\hline \begin{tabular}{l}
8(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \tan x(+c) \\
\& \mathrm{f}(x)=\frac{\cos x}{\sin x} \\
\& \mathrm{f}^{\prime}(x)=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
\& =\frac{-1}{\sin ^{2} x} \\
\& =-\operatorname{cosec}^{2} x
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
A1
\end{tabular} \& 1

4 \& | quotient rule $\frac{ \pm \sin ^{2} x \pm \cos ^{2} x}{\sin ^{2} x}$ |
| :--- |
| use of $\sin ^{2} x+\cos ^{2} x=1$ |
| AG CSO |
| Special cases $\begin{aligned} & \mathrm{f}(x)=\frac{\cot x}{1} \\ & \mathrm{f}^{\prime}(x)=\frac{1 \times-\operatorname{cosec}^{2} x-\cot x \times 0}{1^{2}} \quad \text { M1 } \\ & =-\operatorname{cosec}^{2} x \quad \text { A1 } \quad(\max 2 / 4) \end{aligned}$ |
| Or $\begin{aligned} & \mathrm{f}(x)=\frac{1}{\tan x} \\ & \mathrm{f}^{\prime}(x)=\frac{\tan x \times 0-1 \times \sec ^{2} x}{\tan ^{2} x} \quad \text { M1 A1 } \\ & =\frac{-\sec ^{2} x}{\tan ^{2} x} \\ & =\frac{-1}{\sin ^{2} x}=-\operatorname{cosec}^{2} \quad \text { A1 } \quad(\max 3 / 4) \end{aligned}$ |

\hline
\end{tabular}

MPC3 (cont)

Q	Solution	Marks	Total	Comments
(c)	LHS $=\tan ^{2} x+\cot ^{2} x+2 \tan x \cot x$	M1		expanding
	$=\tan ^{2} x+1+\cot ^{2} x+1$	M1		correct use of trig identities
	$\begin{aligned} & =\sec ^{2} x+\operatorname{cosec}^{2} x \\ & =\text { RHS } \end{aligned}$	A1	3	CSO
(d)	$\int(\tan x+\cot x)^{2} d x=\int \sec ^{2} x+\operatorname{cosec}^{2} x \mathrm{~d} x$	M1		use of identity
	$=[\tan x-\cot x]_{0.5}^{1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		$\pm \tan x \pm \cot x \mathrm{OE}$
	$\begin{aligned} & =0.9153--1.2842 \\ & =2.2 \end{aligned}$	A1	4	AWRT
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	C	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1(a)(i)	$\begin{aligned} & y=\left(2 x^{2}-5 x+1\right)^{20} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=20\left(2 x^{2}-5 x+1\right)^{19}(4 x-5) \quad \text { OE } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	chain rule 20()$^{19} \mathrm{f}(x)$ with no further incorrect working
(ii)	$\begin{aligned} & y=x \cos x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-x \sin x+\cos x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\begin{aligned} & \text { product rule } \pm x \sin x \pm \cos x \\ & \text { CSO } \end{aligned}$
(b)	$\begin{aligned} y & =\frac{x^{3}}{x-2} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{(x-2) 3 x^{2}-x^{3} \times 1}{(x-2)^{2}} \\ & =\frac{3 x^{3}-6 x^{2}-x^{3}}{(x-2)^{2}} \\ & =\frac{2 x^{2}(x-3)}{(x-2)^{2}} \end{aligned}$	M1 A1 A1	3	quotient rule $\frac{ \pm v u ' \pm u v^{\prime}}{(x-2)^{2}}$ condone missing brackets CSO
	Total		7	
2(a)	$\begin{aligned} & \cot x=2 \Rightarrow \tan x=0.5 \\ & x=0.46,3.61 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	AWRT; no others within range
(b)	$\begin{aligned} & \operatorname{cosec}^{2} x=\frac{3 \cot x+4}{2} \\ & 2\left(1+\cot ^{2} x\right)=3 \cot x+4 \\ & \left(2 \cot ^{2} x-3 \cot x+2-4=0\right) \end{aligned}$	M1		Correct use of $\operatorname{cosec}^{2} x=1+\cot ^{2} x$
	$2 \cot ^{2} x-3 \cot x-2=0$	A1	2	AG; correct with no slips from line with no fractions
(c)	$(2 \cot x+1)(\cot x-2)(=0)$	M1		Attempt to solve
	$\begin{aligned} & \cot x=-\frac{1}{2}, 2 \\ & \tan x=-2,0.5 \end{aligned}$	A1		
		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	4	2 correct Allow 3.6(0) 4 correct (with no extras in range) AWRT SC Degrees $\left.\begin{array}{l}\text { 26.57, } 206.57 \\ \text { 116.57, 296.57 }\end{array}\right\}$ B1 for 2 correct
	Total		8	

MPC3 (cont)

MPC3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 5(a)(i) \& \& \begin{tabular}{l}
m1 \\
A1 \\
B1 \\
M1 \\
A1F \\
A1
\end{tabular} \& 4

4 \& | M1 for $k \ln \left(2 x^{2}-8 x+3\right)$; allow $\mathrm{k} \ln u$ |
| :--- |
| Correct substitution into |
| $k \ln \left(2 x^{2}-8 x+3\right)$ or 3 , 27 into $k \ln u$ |
| OE |
| $\int 2$ terms in u with rational indices |
| Must be 2 terms with correct indices $\left(\right.$ only ft for $\left.x=\frac{u-1}{3}\right)$ |
| CSO OE |

\hline \& Total \& \& 9 \&

\hline 6(a)

(b) \&

x	y
0.15	6.692
0.25	4.042
0.35	2.916
0.45	2.299

\[
$$
\begin{aligned}
\int & \simeq 0.1 \times \sum y \quad\left(\sum y=15.949\right) \\
& =1.59
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| B1 |
| B1 |
| A1 | \& 2

4 \& | Correct shape |
| :--- |
| Vertex |
| Correct x values ≥ 3 correct y values |
| correct h used correctly |

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

MPC3 (cont)

Q	Solution	Marks	Total	Comments	
7(a)	Stretch (I)				
	Scale factor $\frac{1}{2}$	M1		I + (II or III)	
	parallel to x-axis (III)	A1		All correct	
	(Or scale factor 4 parallel to y-axis)				
	Translation	M1			
	$\left[\begin{array}{c}0 \\ -5\end{array}\right] \quad$ OE	A1	4		
	Alternatives				
	translate $\binom{0}{-\frac{5}{4}}$, stretch sf $4 \\| y$-axis			Mark translation first. Mark stretch as above, but relative to their translation.	
	translate $\binom{0}{-5}$, stretch sf $\frac{1}{2} \\| x$-axis				
		M1		Modulus graph symmetrical about y-axis	
		A1		left of $-\frac{\sqrt{5}}{2}$ and right of $\frac{\sqrt{5}}{2}$	
(b)	$\begin{array}{c\|c} \left.-\frac{\sqrt{5}}{2}\right) & \left(\frac{\sqrt{5}}{2}\right) \\ x \end{array}$	A1	3	(0,5), cusps drawn and no straight lines between cusps	
(c)(i)	$\begin{aligned} & 4 x^{2}-5=4 \\ & 4 x^{2}=9 \end{aligned}$				
	$x= \pm \frac{3}{2}$ OE	B1			
	$4 x^{2}-5=-4$	M1		$16 x^{4}-40 x^{2}+9=0$	
	$4 x^{2}=1$				
	$x= \pm \frac{1}{2}$	A1	3		
(ii)	$x \leq-\frac{3}{2}, \quad x \geq \frac{3}{2}$	B1F		2 correct statements	
	$-\frac{1}{2} \leq x, \quad x \leq \frac{1}{2}$	B1F	2	4 correct statements	
				SC c(ii) 1 mark penalty for strict inequalities	
	Total		12		

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^2]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b) \\
(c)
\end{tabular} \& \[
\left.\begin{array}{l}
\begin{array}{rl}
\frac{\mathrm{d} y}{\mathrm{~d} x} \& =5(3 x+1)^{4} \times 3 \\
\& =15(3 x+1)^{4}
\end{array} \\
\begin{array}{rl}
\frac{\mathrm{d} y}{\mathrm{~d} x} \& =\frac{3}{3 x+1}
\end{array} \\
\begin{array}{rl}
\frac{\mathrm{d} y}{\mathrm{~d} x} \& = \\
(3 x+1)^{5} \times \frac{3}{3 x+1}+\ln (3 x+1) \times 15(3 x+1)^{4}
\end{array} \\
\left(\begin{array}{l}
= \\
= \\
=
\end{array}\right. \\
=3 x+1)^{4}[3 x+1)^{4}[1+5 \ln (3 x+1)]
\end{array}\right)
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 2
2
2 \& \begin{tabular}{l}
\[
k(3 x+1)^{4}
\] \\
with no further errors (w.n.f.e) \\
\(\frac{k}{3 x+1}\) \\
w.n.f.e \\
product rule \(u v^{\prime}+u^{\prime} v\) (from (a) and (b)) either term correct CSO with no further errors
\end{tabular} \\
\hline \& Total \& \& 7 \& \\
\hline \begin{tabular}{l}
2(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& x=\cos ^{-1} \frac{1}{3} \\
\& =1.23,5.05 \quad(0.39 \pi, 1.61 \pi) \\
\& \sec ^{2} x-1=2 \sec x+2 \\
\& \sec ^{2} x-2 \sec x-3=0 \\
\& \sec ^{2} x-2 \sec x-3=0 \\
\& (\sec x-3)(\sec x+1)=0 \\
\& \cos x=\frac{1}{3} \text { or }-1 \quad \text { o.e } \\
\& x=1.23,5.05, \\
\& 3.14 \quad(\pi)
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1,A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { M1 } \\
\text { A1 } \\
\text { B1f } \\
\text { B1 }
\end{gathered}
\] \& 3
2
2

4 \& | PI AWRT (-1 for each error in range) SC 70.53, 289.47 B1 use of $\sec ^{2} x=1+\tan ^{2} x$ AG; CSO attempt to solve |
| :--- |
| (2 answers in range from (a)) AWRT all correct and no extras in range SC 70.53, 289.47, 180 B1 |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

(Extra +c penalised once throughout paper)

MPC3 (cont)

MPC3 (cont)

Alternative

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q \& \multicolumn{2}{|c|}{Solution} \& Marks \& Total \& Comments \\
\hline \multirow[t]{2}{*}{7(a)} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& 3 \& \[
\begin{aligned}
\& \frac{ \pm \cos ^{2} \theta \pm \sin ^{2} \theta}{\cos ^{2} \theta} \\
\& \left(1+\tan ^{2} \theta\right) \\
\& \mathrm{AG} ; \mathrm{CSO}
\end{aligned}
\] \\
\hline \& \& \& M1

A1 \& 2 \& | use of $\cos ^{2} \theta+x^{2}=1$ |
| :--- |
| AG; CSO |

\hline (c) \& \& \& | M1 |
| :--- |
| m1 |
| A1 |
| A1 |
| A1 | \& 5 \& | $\frac{\mathrm{dx}}{\mathrm{~d} \theta}= \pm \cos \theta$ |
| :--- |
| all in terms of θ |
| CSO including $\mathrm{d} \theta$'s |

\hline \& \& Total \& \& 10 \&

\hline \& \& TOTAL \& \& 75 \&

\hline
\end{tabular}

Alternative
7(a) $\mathrm{y}=\frac{\tan \theta}{1}$
$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{1 \sec ^{2} \theta-0}{1^{2}}$
$=\sec ^{2} \theta$
M1
A1
A1

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^3]
Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1	$\begin{array}{ll} & x \\ 1 & y \\ 3 & 0.5 \\ 5 & 0.366(0) \\ 7 & 0.309(0) \\ 9 & 0.274(3) \\ \int & 0.25 \\ \int & \\ \frac{1}{3} \times 2 \times[(0.5+0.25)+ \\ 4(0.3660+0.2743)+2(0.3090)] \\ = & 2.62 \end{array}$	B1 B1 M1 A1	4	x values and no extra values $4+$ correct y values or $\frac{1}{1+\sqrt{3}}$ etc Correct application of Simpson’s rule for their x values (x odd) CSO must be 3sf
	Total		4	
2	$\begin{aligned} & V=(\pi) \int y^{2} \mathrm{~d} x \\ & =(\pi) \int(x-2)^{5} \mathrm{~d} x \\ & =(\pi)\left[\frac{(x-2)^{6}}{6}\right]_{3}^{4} \\ & =(\pi)\left(\frac{2^{6}}{6}-\frac{1}{6}\right) \\ & =10.5 \pi \end{aligned}$	M1 A1 m1 A1	4	limits not required correct substitution into $(\pi) k(x-2)^{6}$ allow equivalent fraction $\left(\frac{63}{6} \pi\right.$ etc $)$ (AWRT 10.5 or $10.5 \pi \mathrm{~m} 1, \mathrm{~A} 0$)
	Total		4	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\begin{aligned} & \mathrm{f}(x)=x^{3}+5 x-4 \\ & \mathrm{f}(0.5)=-1.375 \\ & \mathrm{f}(1)=2 \end{aligned}$	M1		Condone $\mathrm{f}(0.5)$ rounding to -1.4
	Change of sign $\therefore 0.5<\alpha<1$ $x^{3}+5 x-4=0$	A1	2	Both statements needed
(b)	$5 x=4-x^{3}$			Must be seen
	$x=\frac{1}{5}\left(4-x^{3}\right)$	B1	1	AG
(c)	$x_{1}=0.5$			
	$\left(x_{2}=0.775\right)(=31 / 40)$			For x_{2} or $x_{3}=(2 \mathrm{sf})$
	$x_{3}=0.707$	A1	2	
(d)				
	I	M1		From 0.5 vertical to curve then horizontal to line
		A1	2	CAO
	Total		7	

Q	Solution	Marks	Total	Comments
(b)	$\begin{aligned} & \sec x=\frac{3}{2} \\ & \cos x=\frac{2}{3} \\ & x=48,312 \end{aligned}$ (Condone answers rounding to) $\begin{aligned} & 2 \tan ^{2} x=10-5 \sec x \\ & 2\left(\sec ^{2} x-1\right)=10-5 \sec x \\ & 2 \sec ^{2} x+5 \sec x-12(=0) \\ & (2 \sec x-3)(\sec x+4)(=0) \\ & \sec x=\frac{3}{2},-4 \\ & \left.\cos x=\frac{2}{3},-\frac{1}{4}\right\} \\ & x=48,312,104,256 \end{aligned}$ Alternative: $\left.\begin{array}{l} \frac{2 \sin ^{2} x}{\cos ^{2} x}=10-\frac{5}{\cos x} \\ 2 \sin ^{2} x=10 \cos ^{2} x-5 \cos x \\ 2-2 \cos ^{2} x=10 \cos ^{2} x-5 \cos x \end{array}\right\}$	B1 B1 M1 A1 m1 A1 B1 B1 (M1) (A1)	6	1 correct 2 correct and no extras in interval Use of trig identity correctly Attempt to solve or factorise 1 slip using formula AWRT 3 correct condone 105 or 255 All correct and no extras in interval
	Total		8	
5(a)	$\mathrm{f}(x) \leq 2, \quad \mathrm{f} \leq 2, \quad y \leq 2$	B2	2	$\left.\begin{array}{l} \leq 2, \mathrm{f}(x)<2, x \leq 2 \\ y<2, \mathrm{f}<2 \end{array}\right\} \text { B1 }$
$\begin{array}{r} \text { (b) } \\ \text { (c)(i) } \end{array}$(ii)	$\mathrm{f}(x)$ is not one to one	E1	1	Allow many to one or numerical example
	$\begin{aligned} & \operatorname{fg}(x)=2-\left(\frac{1}{x-4}\right)^{4} \\ & 2-\left(\frac{1}{x-4}\right)^{4}=-14 \\ & 16=\left(\frac{1}{x-4}\right)^{4} \end{aligned}$	B1	1	
	$\left.\begin{array}{l} (x-4)^{4}=\frac{1}{16} \\ x-4= \pm \frac{1}{2} \end{array}\right\}$	M1 M1		Correct handling of fourth root Must have \pm Correct handling of reciprocal
	$x=4 \frac{1}{2}, 3 \frac{1}{2}$		3	
	Total		7	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
9(a)	$\begin{aligned} & y=\frac{4 x}{4 x-3} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(4 x-3) \cdot 4-4 x(4)}{(4 x-3)^{2}} \\ & =\frac{-12}{(4 x-3)^{2}} \end{aligned}$	M1 A1	2	Must use quotient rule Condone one slip $k=-12$
(b)(i)	$\begin{aligned} & y=x \ln (4 x-3) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x \cdot 4}{4 x-3}+\ln (4 x-3) \end{aligned}$	M1 m1 A1	3	$\frac{\mathrm{f}(x)}{4 x-3}+g(x) \quad$ ' $\mathrm{f}(\mathrm{x})$ ' may be constant $\frac{k x}{4 x-3}+\ln (4 x-3)$
(ii)	$\begin{aligned} & x=1 \quad y=0 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \\ & \therefore y=4(x-1) \end{aligned}$ any correct form	B1 M1 A1	3	$\operatorname{Sub} x=1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ CSO Must have full marks in (b)(i)
(c)(i)	$\begin{aligned} & u=4 x-3 \\ & \mathrm{~d} u=4 \mathrm{~d} x \\ & \int \frac{4 x}{4 x-3} \mathrm{~d} x=\int \frac{u+3}{u} \frac{\mathrm{~d} u}{4} \\ & =\left(\frac{1}{4}\right) \int\left(1+\frac{3}{u}\right)(\mathrm{d} u) \\ & =\frac{1}{4}(u+3 \ln u) \end{aligned}$	M1 A1 m1		$\begin{aligned} \text { Or } \int \frac{4 x}{4 x-3} \mathrm{~d} x=\int & \left(1+\frac{3}{4 x-3}\right) \mathrm{d} x \\ & =\int\left(1+\frac{3}{u}\right) \mathrm{d} u \text { etc } \end{aligned}$
	$=\frac{1}{4}[(4 x-3)+3 \ln (4 x-3)](+c)$	A1	4	CSO Condone missing $\mathrm{d} u$
(ii)	$\begin{aligned} & \int \ln (4 x-3) \mathrm{d} x \\ & u=\ln (4 x-3) \quad \frac{\mathrm{d} v}{\mathrm{~d} x}=1 \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{4}{4 x-3} \quad v=x \\ & \int=x \ln (4 x-3)-\int \frac{4 x}{4 x-3} \mathrm{~d} x \\ & =x \ln (4 x-3)-\frac{1}{4}[(4 x-3)+3 \ln (4 x-3)] \end{aligned}$	M1 A1 m1 A1	4	In correct direction $x \ln (4 x-3)-\text { their }(\mathrm{c})(\mathrm{i})$
	Total		16	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
4(a)		M1		Modulus graph, 3 section, condone shape inside + outside $\pm \sqrt{50}$
		A1		Cusps + curvature outside $\pm \sqrt{50}$
	$(-\sqrt{50})$ O $(\sqrt{50})$	A1	3	Value of y and shape inside ($\pm \sqrt{50})$
(b)	$\left\|50-x^{2}\right\|=14$			
	$\begin{array}{ll} 50-x^{2}=14 & x^{2}=36 \\ 50-x^{2}=-14 & x^{2}=64 \end{array}$	M1		Either
	$x= \pm 6, \pm 8$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	2 correct, from correct working All 4 correct, from correct working
(c)	$\begin{aligned} & -6<x<6 \\ & x>8, x<-8 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(d)	Reflect in x-axis $[0]$	M1,A1		$\int \text { Reflect in } y=a$
	Translate $\left[\begin{array}{l}0 \\ 50\end{array}\right.$	E1, B1	4	$\text { Translate }\left[\begin{array}{c} \\ 50-2 a \end{array}\right]$
				$\begin{aligned} & \text { or }\left\{\begin{array}{l} \text { Translate }\left[\begin{array}{c} 0 \\ -50 \end{array}\right] \\ \text { Reflect in } x \text {-axis } \end{array}\right\} \\ & \text { or }\left\{\begin{array}{l} \text { Translate } \left.\left[\begin{array}{c} 0 \\ 2 a-50 \end{array}\right]\right\} \\ \text { Reflect in } y=a \end{array}\right\} \end{aligned}$
	Reflect in $y=25$ scores 4/4			
	Total		12	
5(a)	$2 \ln x=5$			
	$\ln x=\frac{5}{2} \quad x=\mathrm{e}^{\frac{5}{2}}$	B1	1	
(b)	$2 \ln x+\frac{15}{\ln x}=11$			
	$2(\ln x)^{2}-11 \ln x+15=0$	M1		Forming quadratic equation in $\ln x$, condone poor notation
	$(2 \ln x-5)(\ln x-3)=0$	m1		Attempt at factorisation/formula
	$\ln x=\frac{5}{2}, 3 \quad \text { condone } 2 \ln x=5$	A1		
	$x=\mathrm{e}^{\frac{5}{2}}, \mathrm{e}^{3}$	A1,A1	5	[SC for substituting $x=\mathrm{e}^{\frac{5}{2}}$ or equivalent into equation and verifying \quad B1 $(1 / 5)]$
	Total		6	

MPC3

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 6(d)

(d) \& \begin{tabular}{l}
$x=0 \quad y=\frac{25}{2}$ or equivalent
$$
y=0 \quad x=\frac{25}{3}
$$

Area of $\Delta=\frac{1}{2} \times \frac{25}{2} \times \frac{25}{3}$

Area $=$ Area $\Delta-$ (b)

Required area $=12.5$ AWRT

Alternative

Area $\Delta=\int_{0}^{\frac{25}{3}} \frac{1}{2}(25-3 x)(\mathrm{d} x)$
$$
=\begin{aligned}
& \frac{1}{2}\left[25 x-\frac{3 x^{2}}{2}\right]_{0}^{\frac{25}{3}} \\
& \frac{1}{2}\left[\frac{625}{3}-\frac{625}{6}\right]
\end{aligned}
$$
$$
=\frac{625}{12}
$$

 \& \& 5 \&

OE

for $\frac{1}{2}($ their $y) \times($ their $x)$ or $\frac{1}{2} a b \sin C$

PI $\Delta>$ (b)

Condone 12.4 AWRT

For integration and $f\left(\frac{25}{3}\right)-f(0)$
\end{tabular}

\hline \& Total \& \& 19 \&

\hline 7(a) \& \[
$$
\begin{aligned}
& \int(t-1) \ln t \mathrm{~d} t \\
& u=\ln t \quad \frac{\mathrm{~d} v}{\mathrm{~d} t}=t-1 \\
& \frac{\mathrm{~d} u}{\mathrm{~d} t}=\frac{1}{t} \quad v=\frac{t^{2}}{2}-t \\
& \int=\left(\frac{t^{2}}{2}-t\right) \ln t-\int\left(\frac{t^{2}}{2}-t\right) \times \frac{1}{t}(\mathrm{~d} t) \\
& =\left(\frac{t^{2}}{2}-t\right) \ln t-\int\left(\frac{t}{2}-1\right)(\mathrm{d} t) \\
& =\left(\frac{t^{2}}{2}-t\right) \ln t-\frac{t^{2}}{4}+t(+c)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| A1 | \& 4 \& | Differentiate + integrate, correct direction |
| :--- |
| All correct |
| Condone missing brackets |
| CAO |

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
7(a)	Alternative $\int(t-1) \ln t$	(M1)		$u=\ln t \quad v^{\prime}=(t-1)$
		(A1)		$u^{\prime}=\frac{1}{t} \quad v=\frac{(t-1)^{2}}{2}$
	$\begin{aligned} & \int=\frac{(t-1)^{2}}{2} \ln t-\int \frac{(t-1)^{2}}{t} \frac{1}{t} \mathrm{~d} t \\ & \frac{(\mathrm{t}-1)^{2}}{2} \ln t-\frac{1}{2} \int \frac{\mathrm{t}^{2}-2 \mathrm{t}+1}{\mathrm{t}} \mathrm{~d} t \\ & \frac{(\mathrm{t}-1)^{2}}{2} \ln t-\frac{1}{2} \int t-2+\frac{1}{t} \mathrm{~d} t \\ & \frac{(\mathrm{t}-1)^{2}}{2} \ln t-\frac{1}{2}\left[\frac{t^{2}}{2}-2 t+\ln t\right] \\ & =\frac{t^{2}}{2} \ln t-t \ln t+\frac{1}{2} \ln t-\frac{t^{2}}{4}+t-\frac{1}{22} \ln t \\ & =\left(\frac{t^{2}}{2}-t\right) \ln t-\frac{1}{4} t^{2}+t+c \end{aligned}$	(A1) (A1)	(4)	
(b)	$\begin{aligned} & t=2 x+1 \\ & \mathrm{~d} t=2 \mathrm{~d} x(\mathrm{RHS}) \\ & 2 x=t-1, \\ & \int=\int \mathrm{Z}(t-1) \ln t \frac{\mathrm{~d} t}{\mathrm{Z}} \end{aligned}$	M1 m1 A1	3	$\begin{aligned} & \frac{\mathrm{d} t}{\mathrm{~d} x}=2 \text { (LHS) } \\ & \mathrm{OE} \\ & \mathrm{AG} \end{aligned}$
(c)	$\begin{aligned} & {[x]_{0}^{1}=[t]_{1}^{3}} \\ & \int=\left[\left(\frac{t^{2}}{2}-t\right) \ln t-\frac{t^{2}}{4}+t\right]_{1}^{3} \\ & =\left[\left(\frac{9}{2}-3\right) \ln 3-\frac{9}{4}+3\right]-\left[0-\frac{1}{4}+1\right] \end{aligned}$	M1 m1		Limit becoming 3 Correctly sub. 1,3 into their (a)
	$=\frac{3}{2} \ln 3$ or $\int=\left[\left(\frac{(2 x+1)^{2}}{2}-(2 x+1)\right) \ln (2 x+1)-\frac{(2 x+1)^{2}}{4}+(2 x+1)\right]_{0}^{1}$	A1 (M1)	3	CSO Condone 1 slip
	$\begin{aligned} & =\left(\left(\frac{9}{2}-3\right) \ln 3-\frac{9}{4}+3\right)-\left(0-\frac{1}{4}+1\right) \\ & =\frac{3}{2} \ln 3 \end{aligned}$	(m1) (A1)	(3)	Correctly sub. 0,1 CSO
	Total		10	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme
2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^4]
Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1(a)	$y^{\prime}=\mathrm{e}^{-4 x}(2 x+2) \quad-4 \mathrm{e}^{-4 x}\left(x^{2}+2 x-2\right)$	M1 A1		$y^{\prime}=A \mathrm{e}^{-4 x}(a x+b) \pm B \mathrm{e}^{-4 x}\left(x^{2}+2 x-2\right)$ where A and B are non-zero constants All correct
	$=\mathrm{e}^{-4 x}\left(2 x+2-4 x^{2}-8 x+8\right)$			or $-4 x^{2} \mathrm{e}^{-4 x}-6 x \mathrm{e}^{-4 x}+10 \mathrm{e}^{-4 x}$
	$=2 \mathrm{e}^{-4 x}\left(5-3 x-2 x^{2}\right)$	A1	3	AG; all correct with no errors, $2^{\text {nd }}$ line (OE) must be seen Condone incorrect order on final line
	or $y=x^{2} \mathrm{e}^{-4 x}+2 x \mathrm{e}^{-4 x}-2 \mathrm{e}^{-4 x}$			
	$\begin{aligned} y^{\prime}= & -4 x^{2} \mathrm{e}^{-4 x}+2 x \mathrm{e}^{-4 x}+2 x .-4 \mathrm{e}^{-4 x} \\ & +2 \mathrm{e}^{-4 x}+8 \mathrm{e}^{-4 x} \\ =- & 4 x^{2} \mathrm{e}^{-4 x}-6 x \mathrm{e}^{-4 x}+10 \mathrm{e}^{-4 x} \end{aligned}$	$\begin{aligned} & \text { (M1) } \\ & \text { (A1) } \end{aligned}$		$\begin{aligned} & A x^{2} \mathrm{e}^{-4 x}+B x \mathrm{e}^{-4 x}+C x \mathrm{e}^{-4 x}+D \mathrm{e}^{-4 x}+E \mathrm{e}^{-4 x} \\ & \text { All correct } \end{aligned}$
	$=2 \mathrm{e}^{-4 x}\left(5-3 x-2 x^{2}\right)$	(A1)		AG; all correct with no errors, $3^{\text {rd }}$ line (OE) must be seen
(b)	$-(2 x+5)(x-1)(=0)$	M1		OE Attempt at factorisation $(\pm 2 x \pm 5)(\pm x \pm 1)$ or formula with at most one error
	$x=\frac{-5}{2}, 1$	A1		Both correct and no errors
				SC $x=1$ only scores M1A0
	$x=1, y=\mathrm{e}^{-4}$	m1		For $y=a \mathrm{e}^{\text {b }}$ attempted
		A1F		Either correct, follow through only from incorrect sign for x
	$x=-\frac{5}{2}, y=\mathrm{e}^{10}\left(-\frac{3}{4}\right)$	A1	5	CSO 2 solutions only
				Note: withhold final mark for extra solutions Note: approximate values only for y can score m1 only
	Total		8	

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\sin x=\frac{1}{3}$ or sight of $\pm 0.34, \pm 0.11 \pi$ or ± 19.47 (or better)	M1		
	$x=0.34,2.8(0) \quad$ AWRT	A1	2	Penalise if incorrect answers in range; ignore answers outside range
(b)	$\begin{aligned} & \operatorname{cosec}^{2} x-1=11-\operatorname{cosec} x \\ & \operatorname{cosec}^{2} x+\operatorname{cosec} x-12(=0) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Correct use of $\cot ^{2} x=\operatorname{cosec}^{2} x-1$
	$(\operatorname{cosec} x+4)(\operatorname{cosec} x-3)(=0)$	m1		Attempt at Factors Gives $\operatorname{cosec} x$ or -12 when expanded Formula one error condoned
	$\left.\begin{array}{l} \operatorname{cosec} x=-4,3 \\ \sin x=-\frac{1}{4}, \frac{1}{3} \end{array}\right\}$	A1		Either Line
	$\Rightarrow x=3.39,6.03 \quad$ AWRT	B1F		3 correct or their two answers from (a) and 3.39, 6.03
	0.34, 2.8(0) AWRT	B1	6	4 correct and no extras in range ignore answers outside range SC 19.47, 160.53, 194.48, $345.52 \quad$ B1
	Alternative $\begin{aligned} & \frac{\cos ^{2} x}{\sin ^{2} x}=11-\frac{1}{\sin x} \\ & \cos ^{2} x=11 \sin ^{2} x-\sin x \end{aligned}$	(M1)		Correct use of trig ratios and multiplying by $\sin ^{2} x$
	$0=12 \sin ^{2} x-\sin x-1$ $0=(4 \sin x+1)(3 \sin x-1)$	(A1)		
	$0=(4 \sin x+1)(3 \sin x-1)$	(m1)		Attempt at factors as above
	$\sin x=-\frac{1}{4}, \frac{1}{3}$	(A1)		
		(B1F) (B1)		As above
	Total		8	

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 7(b) or \& \[
\begin{aligned}
\& \frac{\mathrm{d} y}{\mathrm{~d} x}=4\left(1+\tan ^{2} 4 x\right) \\
\& u=\tan 4 x \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=4+4 u^{2} \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=(8) u \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
\& \frac{\mathrm{~d} u}{\mathrm{~d} x}=4+4 \tan ^{2} 4 x=4+4 u^{2} \\
\& \begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \& =8 u\left(4+4 u^{2}\right) \\
\& =32 u\left(1+u^{2}\right) \\
\& =32 y\left(1+y^{2}\right)
\end{aligned}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { (M1) } \\
\& \text { (m1) } \\
\& \text { (A1) } \\
\& \text { (m1) } \\
\& \text { (A1) } \\
\& \hline
\end{aligned}
\] \& \& \\
\hline \& Total \& \& 8 \& \\
\hline \begin{tabular}{l}
8(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \int x \sin (2 x-1) \mathrm{d} x \\
\& u=x \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin (2 x-1) \\
\& \frac{\mathrm{d} u}{\mathrm{~d} x}=1 \quad v=-\frac{1}{2} \cos (2 x-1) \\
\& \left(\int=\right)-\frac{x}{2} \cos (2 x-1) \\
\& -\int-\frac{1}{2} \cos (2 x-1)(\mathrm{d} x) \\
\& =-\frac{x}{2} \cos (2 x-1)+\frac{1}{2} \int \cos (2 x-1)(\mathrm{d} x) \\
\& =-\frac{x}{2} \cos (2 x-1)+\frac{1}{4} \sin (2 x-1)+c \\
\& u=2 x-1 \\
\& \text { 'd } u=2 \mathrm{~d} x^{\prime} \\
\& \int \frac{x^{2}}{2 x-1} \mathrm{~d} x=\int \frac{(u+1)^{2}}{4 u} \frac{\mathrm{~d} u}{2} \\
\& =\left(\frac{1}{8}\right) \int \frac{u^{2}+2 u+1}{u} \mathrm{~d} u \\
\& =\left(\frac{1}{8}\right) \int u+2+\frac{1}{u} \mathrm{~d} u \\
\& =\left(\frac{1}{8}\right)\left[\frac{u^{2}}{2}+2 u+\ln u\right] \\
\& =\frac{1}{8}\left[\frac{(2 x-1)^{2}}{2}+2(2 x-1)+\ln (2 x-1)\right]+c
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A1 \\
A1 \\
M1 \\
m1 \\
A1 \\
A1 \\
B1 \\
A1
\end{tabular} \& 5

6 \& | $\int \sin f(x), \frac{\mathrm{d}}{\mathrm{d} x}(x)$ attempted |
| :--- |
| All correct - condone omission of brackets |
| correct substitution of their terms into parts |
| All correct - condone omission of brackets |
| CSO condone missing $+c$ and $\mathrm{d} x$ |
| Condone missing brackets around $2 x-1$ if recovered in final line ISW |
| OE |
| All in terms of u |
| All correct |
| PI from later working |
| or $\left(\frac{1}{8}\right)\left[\frac{(u+2)^{2}}{2}+\ln u\right]$ |
| or $=\frac{1}{8}\left[\frac{(2 x+1)^{2}}{2}+\ln (2 x-1)\right]+c$ |
| CSO condone missing $+c$ only |
| ISW |

\hline \& Total \& \& 11 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education June 2010

Mathematics
MPC3

Pure Core 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\left.\begin{array}{l} \mathrm{f}(x)=3^{x}-10+x^{3} \text { (or reverse) } \\ \mathrm{f}(1)=-6 \\ \mathrm{f}(2)=7 \end{array}\right\}$	M1		Attempt to evaluate f(1) and f(2)
	Change of sign $\therefore 1<\alpha<2$ OR	A1	2	All working must be correct plus statement
	$\left.\begin{array}{ll}\text { LHS (1) }=3 & \text { RHS (1)=9 } \\ \text { LHS (2) }=9 & \text { RHS (2)=2 }\end{array}\right\}$ At 1 LHS < RHS, At 2 LHS > RHS $\therefore 1<\alpha<2$	(M1) (A1)		Must be these values
(b)(i)	$\begin{aligned} & 3^{x}=10-x^{3} \\ & x^{3}=10-3^{x} \\ & x=\sqrt[3]{10-3^{x}} \end{aligned}$	B1	1	This line must be seen AG
(ii)	$\left(x_{1}=1\right)$			
	$\begin{aligned} & x_{2}=1.913 \\ & x_{3}=1.221 \\ & \hline \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Sight of AWRT 1.9 or AWRT 1.2 Both values correct
	Total		5	

MPC3

Q	Solution	Marks	Total	Comments
2(a)(i)	$(y=) 1$	B1	1	Condone 1 marked at $A, A=1$ etc but not $\frac{1}{\cos 0}, \sec 0$
(ii)		M1		Modulus graph $y>0$
		A1		$3+2 \times \frac{1}{2}$ sections roughly as shown, condone sections touching, variable minimum heights
		A1	3	Correct graph with correct behaviour at 4 asymptotes but need not show broken lines; and roughly same minima
(b)	$\cos x=\frac{1}{2} \quad \text { or } \cos ^{-1} \frac{1}{2} \text { seen }$	M1		or sight of $\pm 60^{\circ}$ or $\pm \frac{\pi}{3}, \pm 1.05$ (AWRT)
	$x=60^{\circ}, 300^{\circ}$	A1	2	Condone extra values outside $0^{\circ}<x<360^{\circ}$, but no extras in interval
(c)	$\sec \left(2 x-10^{\circ}\right)=2, \sec \left(2 x-10^{\circ}\right)=-2$ $\cos \left(2 x-10^{\circ}\right)=\frac{1}{2}$ or $\cos \left(2 x-10^{\circ}\right)=-\frac{1}{2}$	M1		Either of these, PI by further working
	$2 x-10^{\circ}=60^{\circ}, 300^{\circ}$ or $2 x-10^{\circ}=120^{\circ}, 240^{\circ}$ (ignore values outside $0^{\circ}<x<360^{\circ}$)	A1		Both correct values from one equation or 2 correct values and no wrong values from both equations, but must have " $2 x-10^{\circ}=$ " PI by $2 x=70^{\circ}, 130^{\circ}, 250^{\circ}, 310^{\circ}$
	$x=35^{\circ}, 65^{\circ}, 125^{\circ}, 155^{\circ}$	B1		3 correct (and not more than 1 extra value in $0^{\circ}<x<180^{\circ}$)
		B1	4	All 4 correct (and no extras in interval)
	Total		10	

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

Q	Solution	Marks	Total	Comments
(b)	$\begin{aligned} & y=\frac{\ln x}{x} \\ & \text { (when) } y=0 \quad x=1 \quad \text { or } \quad(1,0) \end{aligned}$	B1	1	Both coordinates must be stated, not 1 simply shown on diagram
	$\begin{aligned} \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) & \frac{x \times \frac{1}{x}-\ln x}{x^{2}} \\ & =\frac{1-\ln x}{x^{2}} \quad \text { or } \quad x^{-2}-x^{-2} \ln x \end{aligned}$	M1 A1		Quotient/product rule $\frac{ \pm \frac{x}{x} \pm \ln x}{x^{2}}$ OE must simplify $\frac{x}{x}$
		m1 A1 A1	5	Putting their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ or numerator $=0$ CSO condone $x=\mathrm{e}^{1}$ CSO must simplify ln e
(c)	Gradient at $x=\mathrm{e}^{3}$ $\begin{aligned} & =\frac{1-\ln \mathrm{e}^{3}}{\left(\mathrm{e}^{3}\right)^{2}} \\ & =\frac{-2}{\mathrm{e}^{6}} \text { or }-2 \mathrm{e}^{-6} \end{aligned}$	M1 A1		Substituting $x=\mathrm{e}^{3}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (condone 1 slip) but must have scored M1 in (b) PI
	Gradient of normal $=\frac{1}{2} \mathrm{e}^{6}$	A1	3	CSO simplified to this
	Total		9	

MPC3 (cont)

MPC3 (cont)

Q	Solution	Marks	Total	Comments
8(d)	Alternative $\begin{aligned} & A=\int\left(4 \mathrm{e}^{-2 x}+2\right) \mathrm{d} x-\int\left(\mathrm{e}^{2 x}-1\right) \mathrm{d} x \\ & =\int_{(0)}^{(\ln 2)}\left(4 \mathrm{e}^{-2 x}-\mathrm{e}^{2 x}+3\right) \mathrm{d} x \\ & =\left[\frac{4 \mathrm{e}^{-2 x}}{-2}-\frac{\mathrm{e}^{2 x}}{2}+3 x\right]_{0}^{\ln 2} \\ & =\left(-2 \mathrm{e}^{-2 \ln 2}-\frac{1}{2} \mathrm{e}^{2 \ln 2}+3 \ln 2\right)-\left(-2-\frac{1}{2}\right) \\ & =3 \ln 2 \text { or } \ln 8 \text { or } \frac{3}{2} \ln 4 \text { OE } \end{aligned}$	(B1) (M1) (A1) (m1) (A1)		Condone functions reversed $\mathrm{e}^{2 x}$ or $\mathrm{e}^{-2 x}$ correctly integrated Correct substitution of their $\ln 2$ from (c)(ii) into their integrated expression CSO must be exact
	Total		15	
	TOTAL		75	

General Certificate of Education (A-level) January 2011

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution		Marks	Total	Comments
1(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=k\left(x^{3}-1\right)^{5}$		M1		Where k is an integer or function of x
	$=6 \times 3 x^{2}\left(x^{3}-1\right)^{5}$	(ISW)	A1	2	
					But note $\frac{\mathrm{d} y}{\mathrm{~d} x}=k\left(x^{3}-1\right)^{5}+\mathrm{p} x^{2}$
					Or $\begin{aligned} & \left(u=x^{3}-1\right) \quad\left(y=u^{6}\right) \\ & \frac{\mathrm{d} y}{\mathrm{~d} u}=6 u^{5} \text { and } \frac{\mathrm{d} u}{\mathrm{~d} x}=3 x^{2} \\ & =6\left(x^{3}-1\right)^{5} \times 3 x^{2} \end{aligned}$
					Note $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \times 3 x^{2}\left(x^{3}-1\right)^{5}+c$ scores M1 A0 (penalise $+c$ in differential once only in paper)
(b)(i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}= \pm x \times \frac{1}{x} \pm \ln x \\ & =1+\ln x \end{aligned}$	(ISW)	M1 A1	2	Product rule attempted and differential of $\ln x$
(ii)	$(x=\mathrm{e}) \quad y=\mathrm{e}$	PI	B1		Must have replaced ln e by 1 Condone $y=2.72$ (AWRT)
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=1+\ln \mathrm{e}(=2)$		M1		Correct substitution into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ But must have scored M1 in (b)(i)
	$y-\mathrm{e}=2(x-\mathrm{e})$ or $y=2 x-\mathrm{e}$	OE, ISW	A1	3	Must have replaced ln e by 1
		Total		7	

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\begin{aligned} & \int \frac{1}{3+2 x} \mathrm{~d} x \\ & =k \ln (3+2 x) \\ & =\frac{1}{2} \ln (3+2 x)+c \end{aligned}$ $\begin{aligned} & u=x \quad \mathrm{~d} v=\sin \frac{x}{2} \\ & \mathrm{~d} u=1 \quad v=-2 \cos \frac{x}{2} \\ & \int=-2 x \cos \frac{x}{2}-\int-2 \cos \frac{x}{2}(\mathrm{~d} x) \\ & =-2 x \cos \frac{x}{2}+4 \sin \frac{x}{2}+c \end{aligned}$	M1 A1 M1 A1 m1 A1	4	Where k is a rational number Or if substitution $u=3+2 x, \mathrm{~d} u=2 \mathrm{~d} x$ $\begin{aligned} & \int=\int \frac{1}{u} \frac{\mathrm{~d} u}{2}=k \ln u \\ & =\frac{1}{2} \ln (3+2 x)+c \end{aligned}$ $\int \sin \frac{x}{2}(\mathrm{~d} x)=k \cos \frac{x}{2}, \frac{\mathrm{~d}}{\mathrm{~d} x}(x)=1$ where k is a constant All correct Correct substitution of their terms into parts formula (watch signs carefully) CAO
	Total		6	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$x \quad y$	B1		Using 4 correct x-values, PI
	0.05 $\cos \sqrt{1.15}$ $=0.4780$ 0.15 $\cos \sqrt{1.45}$ $=0.3585$ 0.25 $\cos \sqrt{1.75}$ $=0.2454$ 0.35 $\cos \sqrt{2.05}$ $=0.1386$	M1		At least 3 correct y-values, (condone unsimplified correct expressions), Or correct values rounded to 2 s.f. or truncated to 2 s.f.
	$\begin{gathered} 0.1 \times \Sigma y \\ =0.122 \end{gathered}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$	4	Used and must be working in radians Must be 3 s.f.
(b)	$\frac{\mathrm{d} u}{\mathrm{~d} x}=3$	M1		$\mathrm{d} u=3 \mathrm{~d} x \quad$ OE
	$\int=\int\left(\frac{u \pm 1}{3}\right) \sqrt{u} \times k \mathrm{~d} u$	m1		All in terms of u, with $k=3$ or $\frac{1}{3}$
	$=\left(\frac{1}{9}\right) \int u^{\frac{3}{2}} \pm u^{\frac{1}{2}}(\mathrm{~d} u)$	m1		$p \int u^{\frac{3}{2}} \pm u^{\frac{1}{2}}(\mathrm{~d} u)$ (must have scored first 2 marks)
	$=\frac{1}{9}\left[\frac{u^{\frac{5}{2}}}{\frac{5}{2}}-\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]$	A1		OE
	$=\left(\frac{1}{9}\right)\left[\left(\frac{2}{5} \times 4^{\frac{5}{2}}-\frac{2}{3} \times 4^{\frac{3}{2}}\right)-\left(\frac{2}{5}-\frac{2}{3}\right)\right]$	m1		Must have earned all previous method marks and then correct substitution, into their integral, of 1,4 for u or 0,1 for x and subtracting
	$=\frac{116}{135} \quad \text { ISW }$	A1	6	Or equivalent fraction

MPC3 (cont)

MPC3 (cont)

MPC3 (cont)

Q	Solution	Marks	Total	Comments
8(b)(iv)	$V=\pi \int_{0}^{\ln 2}\left(4 \mathrm{e}^{-2 x}-\mathrm{e}^{-4 x}\right)^{2} \mathrm{~d} x$	B1		Must be completely correct including $\mathrm{d} x$ seen on this line or next line Limits, brackets and π PI from later working
	$\begin{aligned} & =(\pi) \int 16 \mathrm{e}^{-4 x}+\mathrm{e}^{-8 x}-8 \mathrm{e}^{-6 x}(\mathrm{~d} x) \\ & =(\pi)\left[-4 \mathrm{e}^{-4 x}-\frac{1}{8} \mathrm{e}^{-8 x}+\frac{4 \mathrm{e}^{-6 x}}{3}\right]_{(0)}^{(\ln 2)} \end{aligned}$	B1 B1		Correct expansion, PI from later working $\frac{16}{-4} e^{-4 x} \text { OE }$
		B1 B1		$-\frac{1}{8} \mathrm{e}^{-8 x}$ OE $\frac{-8}{-6} \mathrm{e}^{-6 x}$ OE may be two separate terms
	$\begin{aligned} &=(\pi)\left[\left(-4 \mathrm{e}^{-4 \ln 2}-\frac{1}{8} \mathrm{e}^{-8 \ln 2}+\frac{4}{3} \mathrm{e}^{-6 \ln 2}\right)\right. \\ &\left.-\left(-4 \mathrm{e}^{0}-\frac{1}{8} \mathrm{e}^{0}+\frac{4}{3} \mathrm{e}^{0}\right)\right] \end{aligned}$	M1		Correct substitution of $x=\ln 2$ and 0 into their integrated expression (must be of form $a \mathrm{e}^{-4 x}+b \mathrm{e}^{-6 x}+c \mathrm{e}^{-8 x}$) and subtracting. PI
	$=\frac{5247}{2048} \pi$	A1	7	OE exact fraction eg $\frac{251856}{98304} \pi$
	Total		16	
	TOTAL		75	

General Certificate of Education (A-level) June 2011

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3 - June 2011

Q	Solution	Marks	Total	Comments
3(a)	note: if degrees used then no marks in (a) and (c) $\left.\begin{array}{l} \mathrm{f}(x)=\cos ^{-1}(2 x-1)-\mathrm{e}^{x} \\ \mathrm{f}(0.4)=0.3 \\ \mathrm{f}(0.5)=-0.1\} \end{array}\right\}$ change of sign $\therefore 0.4<\alpha<0.5$	M1 A1 (M1) (A1)	2	or reverse sight of ± 0.3 (AWRT) AND ∓ 0.1 (AWRT) CSO, note $\mathrm{f}(x)$ must be defined, condone $0.4 \leq \alpha \leq 0.5$ alternative method $\left\{\begin{array}{l} \mathrm{e}^{0.4}=1.5, \cos ^{-1}(2 \times 0.4-1)=1.8 \\ \mathrm{e}^{0.5}=1.65, \cos ^{-1}(2 \times 0.5-1)=1.57 \end{array}\right\}$ $\left.\begin{array}{l} \text { at } 0.4 \mathrm{e}^{x}<\cos ^{-1}(2 x-1) \\ \text { at } 0.5 \mathrm{e}^{x}>\cos ^{-1}(2 x-1) \\ \therefore 0.4<\alpha<0.5 \end{array}\right\}$
(b)	$\begin{aligned} & \cos ^{-1}(2 x-1)=\mathrm{e}^{x} \\ & 2 x-1=\cos \left(\mathrm{e}^{x}\right) \\ & x=\frac{1}{2}\left(\cos \left(\mathrm{e}^{x}\right)+1\right)=\frac{1}{2}+\frac{1}{2} \cos \left(\mathrm{e}^{x}\right) \end{aligned}$	B1	1	AG must see middle line, and no errors seen, but condone $\cos \mathrm{e}^{x}$
(c)	$\begin{aligned} & x_{1}=0.4 \\ & x_{2}=0.539 \\ & x_{3}=0.428 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & \text { CAO } \\ & \text { CAO } \end{aligned}$
	Total		5	

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{aligned} & \left(\sin ^{-1} \pm 0.25=\right) \pm 14.5 \\ & \theta=194.5,345.5 \quad(\mathrm{AWRT}) \\ & 2 \cot ^{2}(2 x+30)=2-7 \operatorname{cosec}(2 x+30) \\ & 2\left(\operatorname{cosec}^{2}(2 x+30)-1\right)=2-7 \operatorname{cosec}(2 x+30) \\ & 2 \operatorname{cosec}^{2}(2 x+30)+7 \operatorname{cosec}(2 x+30)-4(=0) \\ & (2 \operatorname{cosec}(2 x+30) \pm 1)(\operatorname{cosec}(2 x+30) \pm 4)(=0) \\ & \operatorname{cosec}(2 x+30)=\frac{1}{2} \text { or }-4 \\ & 2 x+30=194.5,345.5 \\ & x=82.2,157.8 \quad \text { (AWRT }) \end{aligned}$ stretch (I) scale factor $\frac{1}{2}$ (II) parallel to x-axis (III) translate $\binom{-15}{0}$ alternative method translate $\binom{-30}{0}$ stretch scale factor $\frac{1}{2}$ parallel to x-axis	M1 A1 M1 A1 m1 A1 B1 B1 M1 A1 E1 B1 (E1) (B1) (M1) (A1)	4	PI by sight of 194.5 etc condone ± 14.4 no extras in interval, ignore answers outside interval condone replacing $2 x+30$ by Y correct use of $\operatorname{cosec}^{2} Y=1+\cot ^{2} Y$ must be in this form attempt at factorisation must be this line using $\mathrm{f}(2 x+30)$ one correct answer, allow 82.3, ignore extra solutions CAO both answers correct and no extras in interval, ignore answers outside interval I and either II or III I + II + III condone ' 15 to left' or ' -15 in x (direction)' as above as above
	Total		12	

Q	Solution	Marks	Total	Comments
7(a)(i)		M1 A1	2	modulus graph, approximate V shape, touching negative x-axis and crossing y axis $-1,3$ marked, graph symmetrical, straight lines
(ii)		M1 A1 A1	3	modulus graph in 3 sections, touching x-axis and crossing positive y-axis correct curvature their $x>1$, their $x<-1$ correct curve $-1 \leq x \leq 1$ and $x= \pm 1, y=1$ marked independent
(b)(i)	$\begin{array}{ll} \|3 x+3\|=\left\|x^{2}-1\right\| & \\ \left(3 x+3=x^{2}-1\right) & \\ (0=) x^{2}-3 x-4 & -\mathrm{A} \\ x=4,-1 & \\ \left(3 x+3=1-x^{2}\right) & \\ x^{2}+3 x+2(=0) & - \text { B } \\ x=-1,-2 & \end{array}$	M1 A1,A1 A1,A1		either A or B seen, all terms on one side
			5	$\therefore x=-2,-1,4$ SC NMS or partial method $\left.\begin{array}{l}1 \text { correct value } 1 / 5 \\ 2 \text { correct values } 2 / 5 \\ 3 \text { correct values } 5 / 5\end{array}\right\} \begin{aligned} & \text { independent of } \\ & \text { method mark }\end{aligned}$ more than 3 distinct values max 2/5
(ii)		M1,A1	2	$x>$ their largest, $x<$ their smallest; CAO
	Total		12	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
8	$\begin{aligned} & \int \frac{1}{\cos ^{2} x(1+2 \tan x)^{2}} \mathrm{~d} x \\ & u=1+2 \tan x \\ & \left(\frac{\mathrm{~d} u}{\mathrm{~d} x}=\right) 2 \sec ^{2} x \text { OE } \\ & \int=\int \frac{\mathrm{d} u}{2 u^{2}} \\ & =\frac{1}{2} \frac{u^{-1}}{-1} \\ & =-\frac{1}{2 u} \\ & =-\frac{1}{2(1+2 \tan x)}(+c) \end{aligned}$	M1 m1 A1 A1F A1	5	condone $\left(\frac{\mathrm{d} u}{\mathrm{~d} x}=\right) a \sec ^{2} x$ where a is a constant $\int \frac{k}{u^{2}}(\mathrm{~d} u)$, where k is a constant correct, or $\frac{1}{2} \int u^{-2}(\mathrm{~d} u)$ correct integral of their expression but must have scored M1 m1 CSO, no ISW
	Total		5	

General Certificate of Education (A-level)
 January 2012

Mathematics
MPC3
(Specification 6360)
Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^5]Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	x y 0 1	B1		all $7 x$ values correct (and no extra) (PI by 7 correct y values)
	1 4 $1 \frac{1}{2}$ 8 2 16 $2 \frac{1}{2}$ 32 3 64	B1		5 or more correct y values, exact $\left(4^{\frac{1}{2}}, 4^{1} \ldots\right)$ or evaluated (in table or in formula)
	$\begin{aligned} & A=\frac{1}{3} \times \frac{1}{2}[65+4 \times 42+2 \times 20] \\ & =\frac{91}{2} \text { or } 45.5 \text { or } \frac{273}{6} \end{aligned}$	M1 A1	4	correct substitution of their $7 y$-values into Simpson's rule CAO
(b)(i)	$\left.\begin{array}{l} \mathrm{f}(x)=4^{x}+2 x-8 \text { or } \mathrm{g}(x)=8-2 x-4^{x} \\ \mathrm{f}(1.2)=-0.3 \text { or } \mathrm{g}(1.2)=0.3 \\ \mathrm{f}(1.3)=0.7 \text { or } \mathrm{g}(1.3)=-0.7 \end{array}\right\}$ AWRT ± 0.3 and ± 0.7 condone $f(1.2)<0, f(1.3)>0$ if f is defined	M1		attempt at evaluating $\mathrm{f}(1.2)$ and $\mathrm{f}(1.3)$ alternative method $\left.\begin{array}{l} 4^{1.2}=5.3,8-2 \times 1.2=5.6 \\ 4^{1.3}=6.1,8-2 \times 1.3=5.4 \end{array}\right\}$ M1
	change of sign $\therefore 1.2<\alpha<1.3$ ($\mathrm{f}(x)$ must be defined and all working correct)	A1	2	$\begin{align*} & \text { at } 1.2 \text { LHS }<\text { RHS } \\ & \text { at } 1.3 \text { LHS }>\text { RHS } \\ & \therefore 1.2<\alpha<1.3 \tag{A1} \end{align*}$
(ii)	$\begin{aligned} & \left(x_{2}=\right) 1.243 \\ & \left(x_{3}=\right) 1.232 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	these values only
	Total		8	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
3(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 12 x^{2}-6 \\
\& \int_{2}^{3} \frac{2 x^{2}-1}{4 x^{3}-6 x+1} \mathrm{~d} x \\
\& =\left[\frac{1}{6} \ln \left(4 x^{3}-6 x+1\right)\right]_{(2)}^{(3)} \\
\& =\frac{1}{6} \ln \left(4 \times 3^{3}-6 \times 3+1\right) \\
\& =\frac{1}{6} \ln 91-\frac{1}{6} \ln \left(4 \times 2^{3}-6 \times 2+1\right) \\
\& =\frac{1}{6} \ln \frac{91}{21} \quad \text { or } \quad\left(=\frac{1}{6} \ln \frac{13}{3}\right)
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
m1 \\
A1F \\
A1
\end{tabular} \& 5 \& \begin{tabular}{l}
do not ISW \\
\(k \ln \left(4 x^{3}-6 x+1\right), k\) is a constant
\[
k=\frac{1}{6}
\] \\
correct substitution in \(\mathrm{F}(3)-\mathrm{F}(2)\). condone poor use or lack of brackets. \\
\(k \ln 91-k \ln 21\) \\
only follow through on their \(k\) \\
or if using the substitution
\[
\begin{aligned}
\& u=4 x^{3}-6 x+1 \\
\& \int=k \int \frac{\mathrm{~d} u}{u} \\
\& =\frac{1}{6} \ln u
\end{aligned}
\] \\
then, either change limits to 21 and 91 ml then A1F Alas scheme or changing back to ' \(x\) ', then m 1 A 1 F A 1 as scheme
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 4(a) \& \[
\begin{aligned}
\& \sec ^{2} \theta-1=\ldots \\
\& \sec ^{2} \theta+3 \sec \theta-10(=0) \\
\& (\sec \theta+5)(\sec \theta-2)=0 \\
\& \sec \theta=-5,2 \\
\& \left(\cos \theta=-\frac{1}{5}, \frac{1}{2}\right) \\
\& 60^{\circ}, 300^{\circ}, 101.5^{\circ}, 258 \cdot 5^{\circ} \quad \text { (AWRT) } \\
\& 4 x-10^{\circ}=60^{\circ}, 101 \cdot 5^{\circ}, 258 \cdot 5^{\circ}, 300^{\circ} \\
\& 4 x=70^{\circ}, 111 \cdot 5^{\circ}, 268 \cdot 5^{\circ}, 310^{\circ} \\
\& x=17 \cdot 5^{\circ}, 27 \cdot 9^{\circ}, 67 \cdot 1^{\circ}, 77 \cdot 5^{\circ} \quad \text { (AWRT) }
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
m1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1F \\
A1
\end{tabular} \& 6

3 \& | correct use of $\sec ^{2} \theta=1+\tan ^{2} \theta$ |
| :--- |
| quadratic expression in $\sec \theta$ with all terms on one side |
| attempt at factors of their quadratic, $(\sec \theta \pm 5)(\sec \theta \pm 2)$, |
| or correct use of quadratic formula |
| 3 correct, ignore answers outside interval all correct, no extras in interval $4 x-10=\text { any of their }(60)$ |
| all their answers from (a), BUT must have scored B1 |
| CAO, ignore answers outside interval |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & {\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] p \mathrm{e}^{-\frac{1}{4} x} x^{2}+q x \mathrm{e}^{-\frac{1}{4} x}} \\ & {\left[\Rightarrow \mathrm{e}^{-\frac{1}{4} x}\left(-\frac{1}{4} x^{2}+2 x\right)=0\right]} \end{aligned}$	M1 A1		$\begin{aligned} & p, q \text { constants } \\ & p=-\frac{1}{4} \text { and } q=2 \end{aligned}$
	$\mathrm{e}^{-\frac{1}{4} x} \neq 0$	E1		or $\mathrm{e}^{-\frac{1}{4} x}=0$ impossible OE (may be seen later)
	$\begin{aligned} & \left(\mathrm{e}^{-\frac{1}{4} x}\right)\left(a x^{2}+b x\right)=0 \\ & x=0,8 \\ & x=0, y=0 \end{aligned}$	m1 A1 A1		$\text { or } \mathrm{e}^{-\frac{1}{4} x} x(a x+b)=0$
	$x=8, y=64 \mathrm{e}^{-2}$	B1	7	condone $y=8^{2} \mathrm{e}^{-\frac{8}{4}}$ etc ignore further numerical evaluation
(b)(i)	$\begin{array}{rll} \int x^{2} \mathrm{e}^{-\frac{1}{4} x} \mathrm{~d} x & u=x^{2} & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{-\frac{1}{4} x} \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x & v=k \mathrm{e}^{-\frac{1}{4} x} \end{array}$	M1		where k is a constant
	$k=-4$	A1		
	$-4 x^{2} \mathrm{e}^{-\frac{1}{4} x}-\int-4 \mathrm{e}^{-\frac{1}{4} x} \times 2 x(\mathrm{~d} x)$, or better $\begin{array}{ll} u=m x & \frac{\mathrm{~d} v}{\mathrm{~d} X}=n \mathrm{e}^{-\frac{1}{4} x} \\ \frac{\mathrm{~d} u}{\mathrm{~d} x}=m & v=-4 n \mathrm{e}^{-\frac{1}{4} x} \end{array}$	A1F m1		correct substitution of their terms both differentiation and integration must be correct
	$\begin{aligned} & \int=-4 x^{2} \mathrm{e}^{-\frac{1}{4} x}+8\left(-4 x \mathrm{e}^{-\frac{1}{4} x}+\int 4 \mathrm{e}^{-\frac{1}{4} x} \mathrm{~d} x\right) \\ & =\left[-4 x^{2} \mathrm{e}^{-\frac{1}{4} x}-32 x \mathrm{e}^{-\frac{1}{4} x}-128 \mathrm{e}^{-\frac{1}{4} x}\right]_{(0)}^{(4)} \\ & =-\mathrm{e}^{-1}[64+256]-[-128] \end{aligned}$	Al m1 (dep on M1 only)		correct substitution and attempt at subtraction in $a x^{2} \mathrm{e}^{-\frac{1}{4} x}+b x \mathrm{e}^{-\frac{1}{4} x}+c \mathrm{e}^{-\frac{1}{4} x}$ (may be in 3 stages)
	$=128-\frac{320}{\mathrm{e}}$	A1	7	or $128-320 \mathrm{e}^{-1}$ ignore further numerical evaluation
(ii)	$v=\pi \int_{(0)}^{(4)} 9 x^{2} \mathrm{e}^{-\frac{1}{4} x}(\mathrm{~d} x)$	M1		condone omission of brackets, limits
	$=9 \pi\left(128-\frac{320}{\mathrm{e}}\right)$	A1F	2	$9 \pi \times$ (their exact b(i) $)$
	Total		16	
	TOTAL		75	

General Certificate of Education (A-level) June 2012

Mathematics
MPC3

(Specification 6360)

Pure Core 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	x y 0.5 3.9163 0.7 1.8748 0.9 0.9520 1.1 0.3773$\begin{aligned} \int & =0.2 \times \sum y \\ (& =0.2 \times 7.12 \ldots) \\ & =1.424 \end{aligned}$	B1 M1 m1 A1	4	All 4 correct x values (and no extras used) $3+y$ decimal values rounded or truncated to 2 dp or better (in table or in formula) (PI by correct answer) Correct substitution of their $4 y$ values (of which 3 are correct), either listed or totalled CAO
	Total		4	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
3(a) \\
(b)(i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) x^{3} \times \frac{1}{x}+3 x^{2} \ln x \\
\& \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) \mathrm{e}^{2}+3 \mathrm{e}^{2} \ln \mathrm{e} \quad\left(=4 \mathrm{e}^{2}\right) \\
\& y=\mathrm{e}^{3} \ln \mathrm{e}\left(=\mathrm{e}^{3}\right) \\
\& y-\mathrm{e}^{3}=4 \mathrm{e}^{2}(x-\mathrm{e}) \\
\& -\mathrm{e}^{3}=4 \mathrm{e}^{2}(x-\mathrm{e}) \text { or } 4 \mathrm{e}^{2} x=3 \mathrm{e}^{3} \quad \mathrm{OE} \\
\& x=\frac{3}{4} \mathrm{e}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
B1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 2 \& \begin{tabular}{l}
\[
p x^{3} \times \frac{1}{x}+q x^{2} \ln x
\] \\
where \(p\) and \(q\) are integers
\[
p=1, q=3
\] \\
Substituting e for \(x\) in their \(\frac{\mathrm{d} y}{\mathrm{~d} x}\), but must have scored M1 in (a) \\
OE but must have evaluated ln e (twice) for this mark (must be in exact form, but condone numerical evaluation after correct equation) \\
Correctly substituting \(y=0\) into a correct tangent equation in (b)(i) \\
CSO; ignore subsequent decimal evaluation
\end{tabular} \\
\hline \& Total \& \& 7 \& \\
\hline 4(a) \& \& \begin{tabular}{l}
M1 \\
A1 \\
A1F \\
A1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 4

3 \& | All 4 terms in this form, $k=\frac{1}{6}, 1$ or 6 $k=\frac{1}{6}$ |
| :--- |
| Correct substitution of their terms into parts formula |
| No ISW for incorrect simplification |
| Must include π, limits and $\mathrm{d} x$ |
| Correct substitution of 0 and 1 into their answer in (a), must be of the form $a x \mathrm{e}^{6 x}-b \mathrm{e}^{6 x}$, where $a>0, b>0$ and $F(1)-F(0)$ seen |
| CAO; ISW |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
6	$\begin{aligned} & u=x^{4}+2 \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=4 x^{3} \\ & \int \frac{x^{7}}{\left(x^{4}+2\right)^{2}} \mathrm{~d} x \end{aligned}$	B1		or $\mathrm{d} u=4 x^{3} \mathrm{~d} x$
	$=\int \frac{k(u-2)}{u^{2}} \mathrm{~d} u \text { or } \int \frac{k(u-2)^{\frac{7}{4}}}{u^{2}} \frac{\mathrm{~d} u}{(u-2)^{\frac{3}{4}}}$	M1		Either expression all in terms of u including replacing $\mathrm{d} x$, but condone omission of $\mathrm{d} u$
	$=\left(\frac{1}{4}\right) \int \frac{1}{u}-\frac{2}{u^{2}} \mathrm{~d} u$	m1		$k \int a u^{-1}+b u^{-2} \mathrm{~d} u$, where k, a, b are constants
	$=\left(\frac{1}{4}\right)\left[\ln u+\frac{2}{u}\right]$	A1		Must have seen $\mathrm{d} u$ on an earlier line where every term is a term in u
	$\left(\int=\left(\frac{1}{4}\right)\left[\ln u+\frac{2}{u}\right]_{2}^{3}\right)$			$\left(\left(\frac{1}{4}\right)\left[\ln \left(x^{4}+2\right)+\frac{2}{\left(x^{4}+2\right)}\right]_{0}^{1}\right)$
	$=\left(\frac{1}{4}\right)\left[\left(\ln 3+\frac{2}{3}\right)-(\ln 2+1)\right]$	m1		Dependent on previous A1
				Correct change of limits, correct substitution and $\mathrm{F}(3)-\mathrm{F}(2)$ or correct replacement of u, correct substitution and $\mathrm{F}(1)-\mathrm{F}(0)$
	$=\frac{1}{4} \ln \left(\frac{3}{2}\right)-\frac{1}{12}$	A1	6	OE in exact form
	Total		6	

Q	Solution	Marks	Total	Comments
7(a)		M1		Modulus graph, 4 sections touching x-axis at $-2,1,3$
		A1		Correct $x>3, x<-2$
	-2	A1	3	Correct $-2 \leq x \leq 3$ with maximum at 2 lower than maximum at -1 and correct cusps at $x=-2, x=1$ and $x=3$ The maximums need to be at $x=-1$ and 2 (approx)
(b)		M1		Symmetrical about y-axis, from original curve for $0<x<1$ and $x>3$
		A1	2	Correct graph including cusp at $x=0$
(c)	Translate	E1		
	$\left.\left[\begin{array}{c} -1 \\ 0 \end{array}\right] \quad\right\}$	B1		
	sf $\frac{1}{2}$ (II)	M1		I and (either II or III)
	//y-axis (III) $)$	A1	4	I + II + III
(d)	$x=-2$	B1		
	$y=5$	B1	2	Each value may be stated or shown as coordinates
	Total		11	

Q	Solution	Marks	Total	Comments
8(a)	$\text { LHS }=\frac{(1-\cos \theta)+(1+\cos \theta)}{(1+\cos \theta)(1-\cos \theta)}$	M1		Combining fractions
	$\begin{aligned} & =\frac{2}{1-\cos ^{2} \theta} \\ & =\frac{2}{\sin ^{2} \theta} \end{aligned}$	A1 m1		Correctly simplified Use of $\sin ^{2} \theta+\cos ^{2} \theta=1$
	$\begin{aligned} & 2 \operatorname{cosec}^{2} \theta=32 \\ & \operatorname{cosec}^{2} \theta=16 \end{aligned}$	A1	4	AG; no errors seen
				OR $\begin{aligned} & 1-\cos \theta+1+\cos \theta=32(1+\cos \theta)(1-\cos \theta) \\ & 2=32\left(1-\cos ^{2} \theta\right)(\mathrm{A} 1) \\ & 2=32 \sin ^{2} \theta(\mathrm{~m} 1) \\ & \operatorname{cosec}^{2} \theta=16(\mathrm{~A} 1) \end{aligned}$
(b)	$\operatorname{cosec} y=(\pm) \sqrt{16}$ or better (PI by further working) $(y=)$	M1		or $\sin y=(\pm) \sqrt{\frac{1}{16}}$ or better
	0.253, (2.889,) (3.394,) (6.031,) (-0.253)	B1		Sight of any of these correct to 3dp or better
	$\begin{aligned} & (y=) \\ & 0.25,2.89,3.39 \quad \text { (or better) } \end{aligned}$	A1		Must see these 3 answers, with or without either/both of -0.25 or 6.03 Ignore answers outside interval -0.25 to 6.03 but extras in this interval scores A0
	$x=0.43,1.74,2(.00), 0.17$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	5	3 correct (must be 2 dp) All 4 correct (must be 2 dp) and no extras in interval (ignore answers outside interval)
	Total		9	

Q	Solution	Marks	Total	Comments
9(a)	$\left(\frac{\mathrm{d} x}{\mathrm{~d} y}=\right) \frac{\cos y \times \cos y-\sin y \times-\sin y}{\cos ^{2} y}$	M1		Condone incorrect signs, poor notation, omission of $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or using $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$=\frac{\cos ^{2} y+\sin ^{2} y}{\cos ^{2} y}$	A1		RHS correct with terms squared, including correct notation Must see this line
	$\begin{aligned} & =\frac{1}{\cos ^{2} y} \text { or }\left(=1+\tan ^{2} y\right) \\ & \frac{\mathrm{d} x}{\mathrm{~d} y}=\sec ^{2} y \end{aligned}$	$\begin{gathered} \text { A1 } \\ \text { CSO } \end{gathered}$	3	Must see one of these AG; all correct including correct use of $\frac{\mathrm{d} x}{\mathrm{~d} y}$ throughout
(b)	$\sec ^{2} y=1+(x-1)^{2}$	M1		Correct use of $\sec ^{2} y=1+\tan ^{2} y$ and in terms of x
	$=x^{2}-2 x+2$	A1	2	AG; must see " $\sec ^{2} y=$ ", $(x-1)^{2}$ expanded and no errors seen
(c)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} y}=x^{2}-2 x+2 \quad \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sec ^{2} y} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x^{2}-2 x+2} \end{aligned}$	B1	1	Must be seen AG and no errors seen

Q	Solution	Marks	Total	Comments
9 cont(d)(i)	$\begin{aligned} & y=\tan ^{-1}(x-1)-\ln x \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) \frac{1}{x^{2}-2 x+2}-\frac{1}{x} \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=0\right) \end{aligned}$	M1		Must be correct
	$\pm x^{2}+b x+c(=0)$	m1		Expression in this form (generous), where b and $c \neq 0$
	$x^{2}-3 x+2=0$	A1		Must see correct equation $=0$
	$x=1,2$	A1	4	Both answers must be seen The two A marks are independent
(ii)		M1		$y^{\prime \prime}=p\left(x^{2}-2 x+2\right)^{-2}(2 x-2) \pm q x^{-2}$ where p and q are constants
	$y^{\prime \prime}=-\left(x^{2}-2 x+2\right)^{-2}(2 x-2)+x^{-2}$	A1	2	$p=-1, q=1$ including correct brackets
(iii)	$x=1, y^{\prime \prime}=1$	M1		Must have scored full marks in (d)(i) and (ii)
	At $x=1, y^{\prime \prime}>0 \therefore$ min When $x=1, y=0$ hence on x-axis	A1	2	Must see $y^{\prime \prime}>0$ or in words Both statements fully correct
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) January 2013

Mathematics
MPC3

(Specification 6360)

Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
2(a)	$y(0)=0$			
	$y(1)=\frac{1}{3}=0 . \dot{3}$			
	$\begin{aligned} & y(2)=\frac{1}{3}=0 . \dot{3} \\ & y(3)=\frac{3}{11}=0 . \dot{2} \overline{7} \end{aligned}$	B1		all $5 x$-values PI by 5 correct y-values
	$y(4)=\frac{4}{18}=0 . \dot{2}$	B1		at least $4 y$-values exact or rounded or truncated to at least 4sf
	$\frac{1}{3} \times 1(0+0 . \dot{2}+4[0 . \dot{3}+0 . \dot{2} \dot{7}]+2[0 . \dot{3}])$	M1		correct use of Simpson's rule using $\frac{1}{3}$ and 4 and 2 correctly with candidate's $5 y$-values
	$=1.104$	A1	4	CAO (must be exactly this value)
(b)	$\int_{0}^{4} \frac{x}{x^{2}+2} \mathrm{~d} x=\frac{1}{2}\left[\ln \left(x^{2}+2\right)\right]$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		for $k \ln \left(x^{2}+2\right)$ all correct; limits not needed
	$=\frac{1}{2}(\ln 18-\ln 2)$	A1F		For $k(\ln 18-\ln 2)$
	$=\frac{1}{2} \ln 9$	A1F		combining candidate's logarithms correctly (must be seen)
	$=\ln 3$	A1	5	CAO (must be exactly this) NMS scores 0/5
	Total		9	

Q	Solution	Marks	Total	Comments
3(a)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 3 \mathrm{e}^{3 x}+\frac{1}{x}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	B1 for one term correct B1 all correct
(b)(i)	$\begin{aligned} & \left(\frac{\mathrm{d} u}{\mathrm{~d} x}=\right) \frac{ \pm \cos x(1+\cos x) \pm \sin x(\sin x)}{(1+\cos x)^{2}} \\ & \cos x(1+\cos x)-\sin x(-\sin x) \end{aligned}$	M1		clear attempt at quotient/product rule condone poor use of brackets
	$\begin{aligned} & \quad(1+\cos x)^{2} \\ & =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \\ & =\frac{\cos x+1}{(1+\cos x)^{2}} \end{aligned}$	A1		any correct form seen
	$=\frac{1}{1+\cos x}$	A1cso	3	AG be convinced correct use of brackets and correct notation used throughout (eg A0 if $\cos x^{2}$ etc seen)
(ii)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{1+\cos x}{\sin x} \times \frac{1}{1+\cos x} \text { OE } \\ & =\frac{1}{\sin x} \end{aligned}$	M1		correct use of chain rule
		A1	2	AG, must see $=\frac{1}{\sin x}$ and no errors seen; condone incorrect use of brackets only if penalised in part (b)(i)
	Total		7	

Q	Solution	Marks	Total	Comments	
4(a)		M1		reflection in the x-axis for the negative $\mathrm{f}(x)$ and remainder as given on sketch	
		A1	2	correct curvatures, correct cusp at $x=4$ condone straight lines for $x<0$ and $x>4$ 4 marked on x-axis	
(b)	Either 1. Stretch 2. \|	x-axis	M1		1 and either 2 or 3
	3. by factor 0.5	A1		1, 2 and 3	
	(followed by) translation [0.5	E1			
	$\left[\begin{array}{c} 0.5 \\ 0 \end{array}\right]$	B1	4		
	or				
	translation	(E1)			
	$\left[\begin{array}{l} 1 \\ 0 \end{array}\right]$	(B1)			
	(followed by) 1. Stretch 2. \|	x-axis	(M1)		1 and either 2 or 3
	3. by factor 0.5	(A1)		1,2 and 3	
	Total		6		

Q	Solution	Marks	Total	Comments
5(a)		M1		$f(x)>-\frac{4}{3}, f \geq-\frac{4}{3}, \text { range } \geq-\frac{4}{3}$
	$\mathrm{f}(\mathrm{x}) \geq-\frac{4}{3}$	A1	2	
(b)(i)	$x \geq-\frac{4}{3}$	B1F	1	correct or FT from (a)
(ii)	$x^{2}=3 y+4$			
	$x=(\pm) \sqrt{3 y+4}$	M1) either order - M1 for correctly changing the subject or reversing
	$\left(\mathrm{f}^{-1}(x)=\right)(-) \sqrt{3 x+4}$	M1		\int operations; M1 for replacing y with x
	$\left(\mathrm{f}^{-1}(x)=\right)-\sqrt{3 x+4}$	A1	3	(dependent on both M1 marks) correct sign
(c)(i)	$3 x-1=1$	M1		Or $3 x-1=\mathrm{e}^{0}$ or $3 x-1= \pm 1$
	$\frac{2}{3} \mathrm{OE}$	A1	2	CAO, NMS $\frac{2}{3}$ OE scores $2 / 2$
(ii)	g has NO inverse because two values of x map to one value (of y) or it is many-one or it is not oneone or 'it is two-one'	B1	1	must indicate no inverse with valid reason; do not accept contradictory reasons
(iii)	$\begin{aligned} & \ln \left\|3 \times \frac{x^{2}-4}{3}-1\right\| \\ & \ln \left\|x^{2}-5\right\| \end{aligned}$	M1 A1	2	NMS scores $0 / 2$, condone $k=-5$ after correct expression seen
(iv)	$\ln \left\|x^{2}-5\right\|=0$ $\left\|x^{2}-5\right\|=1$			
	$x^{2}-5=1 \quad\left(\text { or }-1 \text { or } \mathrm{e}^{0} \text { or }-\mathrm{e}^{0} \text { seen }\right)$	M1		$x^{2}-k=1$ etc, for candidate's positive integer, k
	$\begin{aligned} & x^{2}=6,4 \text { or candidate's } k+1 \text { or } k-1 \\ & x=\sqrt{6}, 2 \end{aligned}$			
	$\begin{aligned} & x=\sqrt{6}, 2 \\ & x=-\sqrt{6},-2 \end{aligned}$	$\begin{aligned} & \text { A1F } \\ & \text { A1F } \end{aligned}$		exact values PI by correct answers
	$(x \leq 0 \Rightarrow) \quad x=-\sqrt{6},-2$	A1	4	CAO, rejecting the positive
	Total		15	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 7(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& y=4 x \cos 2 x \\
& \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 4 \cos 2 x-4 x(2) \sin 2 x
\end{aligned}
$$

gradient of the tangent

$A \cos \frac{2 \pi}{4}+B \times \frac{\pi}{4} \sin \frac{2 \pi}{4}$
$$
=-2 \pi
$$

an equation of the tangent is
$$
y=-2 \pi\left(x-\frac{\pi}{4}\right)
$$
$$
\left.\begin{array}{l}
u=A x \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}=\cos 2 x \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=A \quad v=B \sin 2 x
\end{array}\right\}
$$

 \&

M1

A1

m1

A1

A1

M1

A1

m1

A1F

A1

 \& 5 \&

anything reducible to $A \cos 2 x+B x \sin 2 x$ where A and B are non-zero integers OE, all correct substituting $\frac{\pi}{4}$ into candidate's derived function must have -2π using correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$

OE, dependent on previous A1

$$
\left(\int_{0}^{\frac{\pi}{4}} 4 x \cos 2 x \mathrm{~d} x\right)
$$

all 4 terms in this form seen or used $A=4$ and $B=\frac{1}{2}$ or $A=1$ and $B=2$, etc correct substitution of candidate's terms into integration by parts formula condone missing limits

candidate's second integration completed correctly

FT on one error including coefficient condone missing limits

OE, exact value
\end{tabular}

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline $8(a)$

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& \int \mathrm{e}^{1-2 x} \mathrm{~d} x=k \mathrm{e}^{1-2 x} \text { or } \mathrm{e}\left(\mathrm{ke}^{-2 x}\right) \\
& \int_{0}^{\ln 2} \mathrm{e}^{1-2 x} \mathrm{~d} x=-\left.\frac{1}{2} \mathrm{e}^{1-2 x}\right|_{0} ^{\ln 2} \text { or } \mathrm{e}\left[-\frac{1}{2} \mathrm{e}^{-2 x}\right]_{0}^{\ln 2} \\
& =-\frac{1}{2} \mathrm{e}^{1-2 \ln 2}--\frac{1}{2} \mathrm{e}^{1-2(0)} \\
& =-\frac{1}{2}\left(\frac{1}{4} \mathrm{e}\right)+\frac{1}{2} \mathrm{e} \\
& =\frac{3}{8} \mathrm{e} \\
& u=\tan x \\
& \frac{\mathrm{~d} u}{\mathrm{~d} x}=\sec ^{2} x
\end{aligned}
$$

Replacing $\mathrm{d} x$ by $\frac{1}{\sec ^{2} x}(\mathrm{~d} u)$ in integral
$$
\begin{align*}
& \sec ^{2} x=1+u^{2} \\
& x=0 \Rightarrow u=0 \\
& x=\frac{\pi}{4} \Rightarrow u=1 \\
& \frac{\pi}{4} \\
& \int_{0}^{\frac{\pi}{\sec ^{4}} x \sqrt{\tan x} \mathrm{~d} x} \tag{du}\\
& =\int\left(1+u^{2}\right) \sqrt{u}(\mathrm{~d} u) \text { or } \int\left(1+u^{2}\right)^{2} \sqrt{u} \frac{(\mathrm{~d} u)}{1+u^{2}} \\
& =\int\left(u^{\frac{5}{2}}+u^{\frac{1}{2}}\right)(\mathrm{d} u) \\
& =\frac{2}{7} u^{\frac{7}{2}}+\frac{2}{3} u^{\frac{3}{2}} \\
& =\frac{20}{21}
\end{align*}
$$

 \&

A1

A1

A1

M1

A1

B1

B1

M1

A1

A1

A1
\end{tabular} \& 4

8 \& | where k is a rational number |
| :--- |
| correct integration condone missing limits |
| correct (no decimals) |
| eliminating \ln |
| AG, be convinced |
| PI below, condone $\mathrm{d} u=\sec ^{2} x \mathrm{~d} x$ |
| or $\frac{1}{1+u^{2}}(\mathrm{~d} u)$ |
| PI below |
| this could be gained by changing u to $\tan x$ after the integration and using $x=0$ and $x=\frac{\pi}{4}$ |
| all in terms of u including replacing $d x$ all correct, condone omission of du must be in this form accept correct unsimplified form CAO |

\hline \& Total \& \& 12 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education (A-level) June 2013

Mathematics
MPC3

(Specification 6360)

Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} & (2 x-3=x) \\ & x=3 \\ & 2 x-3=-x \\ & x=1 \\ & \\ & x \leq 1 \\ & x \geq 3 \end{aligned}$	B1 M1 A1 B1 B1	3 2	or $-(2 x-3)=x$ or $-2 x+3=x$ No ISW in part(b), mark their final line as their answer. Or $1 \geq x$ Or $3 \leq x$ Or " $x \leq 1$ or $x \geq 3$ " for B1 B1
	Total		5	
2(a) (b)	$\begin{aligned} & \left(y=x^{4} \tan 2 x\right) \\ & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 4 x^{3} \tan 2 x+x^{4} 2 \sec ^{2} 2 x \end{aligned}$ $\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{ \pm 2 x(x-1) \pm 1\left(x^{2}\right)}{(x-1)^{2}} \\ & \left(=\frac{x^{2}-2 x}{(x-1)^{2}}\right) \\ & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{3}{4} \quad \text { or } 0.75 \text { OE } \end{aligned}$	M1 A1 A1 M1 A1 A1	3	$4 x^{3} \tan 2 x+A x^{4} \sec ^{2} k x \quad$ OE where A is a non-zero constant. A1 for $k=2$ may have $(\sec 2 x)^{2}$ or $\frac{1}{\cos ^{2} 2 x}$ A1 all correct ISW if attempt to simplify is incorrect. Use of the quotient rule $\frac{2 x(x-1)-1\left(x^{2}\right)}{(x-1)^{2}}$ Simplification not required Obtained from correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	Total		6	

Q	Solution	Marks	Total	Comments
5(a)	$x_{i} \left\lvert\, 0.4\left(\frac{2}{5}\right) \quad 1.2\left(\frac{6}{5}\right) \quad 2\left(\frac{10}{5}\right) \quad 2.8\left(\frac{14}{5}\right) \quad 3.6\left(\frac{18}{5}\right)\right.$	B1		All $5 x$-values correct, PI by 5 correct y -
	y_{i} 5.20231 5.35985 5.91608 6.99657 8.58231	B1		values. At least 4 correct y-values rounded or truncated to at least 4 s.f. or in surd form $\sqrt{27+(0.4)^{3}}, \sqrt{27+(1.2)^{3}}$, etc. or $\sqrt{27.064}, \sqrt{28.728}$, etc. or sight of 32.057...
	$\begin{gathered} \int_{0}^{4} \sqrt{27+x^{3}} \approx 0.8 \sum_{1}^{5} y_{i} \\ (=0.8 \times 32.057 \ldots) \end{gathered}$	M1		Correct use of mid-ordinate rule using 0.8 with candidate's $5 y$-values. Dependent on first B1
	$=25.6$	A1	4	CAO (must be exactly this) and no error seen
(b)				Could be gained without answering part (a)
		B1		Diagram showing curve through the midpoint of the top of rectangle. May have one or more rectangles.
	"Smaller" OE	E1	2	Dependent on B1
	Total		6	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 6(a)

(b) \&

\[
(-1,0) and(1, \pi)

\] \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 | \& 2

2 \& | Correct sketch of $\cos ^{-1} x$. |
| :--- |
| Stated |
| Correct sketch of $\pi-\cos ^{-1} x$ |
| Must touch negative x-axis. |
| Stated |

\hline \& Total \& \& 4 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
8(a)(i)	$\mathrm{f}(x)=\ln (2 x-3)$			
	$2 x-3=\mathrm{e}^{\text {y }}$	M1		Either order:
	$2 y-3=\mathrm{e}^{x}$	M1	$\{$	M1 for antilog M1 for replacing $\mathrm{f}(x)$ or y with x
	$\left(\mathrm{f}^{-1}(x)=\right) \frac{1}{2}\left(\mathrm{e}^{x}+3\right) \quad$ OE	A1	3	Correct expression in x
	$\mathrm{f}^{-1}(x)>\frac{3}{2}$	B1	1	Do not condone
				$\begin{aligned} & \mathrm{f}^{-1}(x) \geq \frac{3}{2}, \quad y>\frac{3}{2}, x>\frac{3}{2} \\ & \text { range }>\frac{3}{2}, \mathrm{f}^{-1}>\frac{3}{2} \end{aligned}$
(iii)	${ }^{4}$	M1		Correct shape crossing y-axis and above x-axis
	- 2	A1	2	2 marked on the y-axis
(b)(i)	$(\mathrm{gf}(\mathrm{x})=) \mathrm{e}^{2 \ln (2 x-3)}-4$	M1		Correct composition
	$=\mathrm{e}^{\ln (2 x-3)^{2}}-4$	m1		PI by correct expression
	$=(2 x-3)^{2}-4$	A1	3	
(ii)	$\begin{aligned} & (\mathrm{fg}(x)=) \ln \left(2\left(\mathrm{e}^{2 x}-4\right)-3\right) \\ & \ln \left(2 \mathrm{e}^{2 x}-11\right)=\ln 5 \end{aligned}$	M1		OE correct composition
	$2 \mathrm{e}^{2 x}-11=5 \quad$ OE	A1		Correct antilog of correct equation
	$\begin{aligned} & \mathrm{e}^{2 x}=8 \\ & 2 x=\ln 8 \end{aligned}$			
	$x=\frac{1}{2} \ln 8$	A1	3	OE exact solution, e.g. $\ln \sqrt{8} \text { or } \frac{3}{2} \ln 2 \text { or } \ln 2^{\frac{3}{2}}$
	Total		12	

Q	Solution	Marks	Total	Comments
9				$V=\pi \int x^{2} \mathrm{~d} y$
				$16 x^{2}-(y-8)^{2}=32$
	$x^{2}=\frac{1}{16}(y-8)^{2}+2$	B1		OE
	$V=(\pi) \int_{(0)}^{(16)}\left(\frac{1}{16}(y-8)^{2}+2\right)(\mathrm{d} y)$	M1		Accept 'their' x^{2} in terms of y Condone missing limits and π wherever bracketed
	$V=(\pi)\left[\frac{1}{16} \times \frac{1}{3}(y-8)^{3}+2 y\right]_{(0)}^{(16)}$	A1		OE, for correct integration of correct integrand
	$\begin{aligned} V=(\pi)\left[\frac{1}{16} \times \frac{1}{3}(16-8)^{3}\right. & +2(16) \\ & \left.-\frac{1}{16} \times \frac{1}{3}(-8)^{3}\right] \end{aligned}$	A1		OE, correct use of correct limits in correct expression, PI by correct answer.
	$V=\frac{160}{3} \pi$	A1	5	OE exact value, $\text { eg } \pi 53 \frac{1}{3} \text { or } \pi 53 . \dot{3} \text { or } \frac{2560}{48} \pi$
	Total		5	

AQA

A-LEVEL

MATHEMATICS

Pure Core 3 - MPC3
Mark scheme

6360
June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

* Accept decimals 0.78(5398...), 1.5(7079...), 2.3(5619...), 3.1(4159...)
** $y\left(\frac{\pi}{4}\right)=\left(\frac{\pi}{4}\right)^{\frac{1}{2}} \sin \frac{\pi}{4}$, etc.
The minimum evidence for M1 is the 3 correct non-zero values of y in any form and sight of 2.4490(97...), but condone omission of the two zeros.
If a candidate's calculator setting is in degrees, they may earn the first B1 for $0, \frac{\pi}{4}$, etc, and then B 0 , but M1 is available .
NMS: An answer of 2.449 without anything else gains $0 / 4$.

(a) $\mathrm{f}(x)>-4, \mathrm{f} \geq-4, \geq-4, x \geq-4$, range $\geq-4, y \geq-4$ score M1 only $y>-4$, etc scores M0 (two errors)
(b) Alternative
$y=x^{2}-6 x+5$
$x^{2}-6 x+(5-y)=0$
$x=\frac{6 \pm \sqrt{36-4(5-y)}}{2} \quad$ correctly solving M1
$x=\frac{6 \pm \sqrt{16+4 y}}{2}$ A1
B1 for swapping x and y and A1 for $\frac{6+\sqrt{16+4 x}}{2}$ having rejected minus sign

Q	Solution	Mark	Total	Comment
7	$\frac{\mathrm{d} u}{\mathrm{~d} x}=-3 x^{2} \text { or } \mathrm{d} u=-3 x^{2} \mathrm{~d} x$ and substituting for $\mathrm{d} x$ and x in terms of u	M1		Condone $\frac{\mathrm{d} u}{\mathrm{~d} x}=3 x^{2}$ or $\mathrm{d} u=3 x^{2} \mathrm{~d} x$ for M1
	$\int \frac{-(3-u)}{3 u} \mathrm{~d} u$	A1		OE correct unsimplified integral in terms of u only with du seen on this line or later
	$=\int\left(\frac{1}{3}-\frac{1}{u}\right)(\mathrm{d} u)$	A1		PI by the next line
	$=\left[\frac{u}{3}-\ln u\right]_{(3)}^{(2)}$	A1F		FT on their $\int\left(a+\frac{b}{u}\right) \mathrm{d} u$
	$=\left[\frac{2}{3}-\ln 2-\left(\frac{3}{3}-\ln 3\right)\right]$	m1		Correct use of correct limits in u for expression of form $a u+b \ln u$ or in terms of x
	$-\ln 2+\ln 3-\frac{1}{3} \quad \text { or } \quad \ln \frac{3}{2}-\frac{1}{3}$	A1	6	OE exact value
	Total		6	

Q	Solution	Mark	Total	Comment
8(a)	$\begin{aligned} & \frac{1-\sin x}{\cos x}+\frac{\cos x}{1-\sin x}=\frac{(1-\sin x)^{2}+\cos ^{2} x}{\cos x(1-\sin x)} \\ & =\frac{1-2 \sin x+\sin ^{2} x+\cos ^{2} x}{\cos x(1-\sin x)} \end{aligned}$	M1		Combining fractions correctly
	$=\frac{1-2 \sin x+1}{\cos x(1-\sin x)}$	m1		Using $\sin ^{2} x+\cos ^{2} x=1$
	$\begin{aligned} & =\frac{2-2 \sin x}{\cos x(1-\sin x)} \text { or } \frac{2(1-\sin x)}{\cos x(1-\sin x)} \\ & =\frac{2}{\cos x} \end{aligned}$	A1		Must have factorised denominator
	$\begin{aligned} & =2 \sec x \\ & \tan ^{2} x-2=2 \sec x \end{aligned}$	A1	4	AG, both expressions seen
(b)	$\sec ^{2} x-1-2=2 \sec x$			Using $\tan ^{2} x=\sec ^{2} x-1, \mathrm{OE}$
	$\sec ^{2} x-2 \sec x-3(=0)$	B1		Or $3 \cos ^{2} x+2 \cos x-1(=0)$
	$(\sec x-3)(\sec x+1) \quad(=0)$	M1		Correctly factorising their expression or substituting into formula
	$\sec x=3 \text { or }-1$	A1		Or $\cos x=\frac{1}{3}$ or -1
	$\sec x=3 \quad \Rightarrow \quad x=71^{\circ}, \quad 289^{\circ}$	B1 B1		
	$\sec x=-1 \quad \Rightarrow \quad x=180^{\circ}$	B1		no extras inside the interval $0 \leq x<360^{\circ},-1 \mathrm{EE}$
			6	$0 \leq x<360^{\circ}$
(c)	$2 \theta-30^{\circ}=70.5^{\circ}, 180^{\circ}, 289.5^{\circ}$	M1		For RHS accept any x-value from part (b) PI
	$\theta=50^{\circ}, 105^{\circ}, 160^{\circ}$	A1	2	Allow $51^{\circ}, 105^{\circ}, 160^{\circ}$
	Total		12	
	TOTAL		75	

(b) $x=70^{\circ}$ and 290° scores B0 B0

AWRT $x=71^{\circ}$ and 289° both not given to the nearest degree earns SC1.
(c) Condone correct answers not given to the nearest degree if already penalised in part (b),

AWRT $\theta=50^{\circ}$ or $51^{\circ}, 105^{\circ}, 160^{\circ}$

AQA

A-LEVEL

Mathematics

Pure Core 3 - MPC3
Mark scheme

6360
June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

(a) NMS: An answer of 2.541 without anything else earns $0 / 4$

The ' 1 x ' may not be seen but implied
(b) NMS: An answer of -0.636 without anything else earns $0 / 4$

(a) For M1 must be attempt at straight lines. Condone correct values on axes for B1, B1
(b) NMS: $x=-5$ scores SC1

If squaring: $x^{2}-8 x+16=4 x^{2}+4 x+1$ therefore $3 x^{2}+12 x-15=0$ scores M1, then A1, B1 as above
(c) $x>-5, x<1$ scores SC1 $x>-5$ or $x<1$ scores SC1

SC1 for $-5 \leq x \leq 1$ or $-5 \leq x \leq 1$ or $-5 \leq x \leq 1$
(d) There are other correct possible transformations, but for full marks the order of the two transformations must produce the correct answer.

Q3	Solution	Mark	Total	Comment
ai	$\mathrm{f}(x)=6 \ln x-8 x+x^{2}+3$			(or reverse)
	$\mathrm{f}(5)=-2.3$			
	$\mathrm{f}(6)=1.75$	M1		Both values correct to 1sf (rounded or
	Change of sign(or different signs)			truncated)
	$\Rightarrow 5<\alpha<6$	A1	2	Must have both statement and interval in words or symbols AND $f(x)$ defined
				OR comparing 2 sides:
				$\begin{array}{ll} 6 \ln 5=9.7 & 8 \times 5-5^{2}-3=12 \\ 6 \ln 6=11 & 8 \times 6-6^{2}-3=9 \end{array}$
				at 5, LHS $<$ RHS;
				at 6 LHS $>$ RHS
				$\Rightarrow 5<\alpha<6$
ii	$x=4+\sqrt{13-6 \ln x}$			
	$x-4=\sqrt{13-6 \ln x}$			
	$(x-4)^{2}=13-6 \ln x$	M1		Correctly eliminate square root
				Must see squared term correctly
	$x^{2}-8 x+16=13-6 \ln x$	A1		expanded
	$6 \ln \mathrm{x}+\mathrm{x}^{2}-8 x+3=0$	A1	3	AG, CSO
iii	$x_{2}=5.828$	B1		
	$x_{3}=5.557$	B1	2	
bi	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6}{x}+2 x-8$	B1		Condone $\frac{6 x^{5}}{x^{6}}$
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\right) 6+2 x^{2}-8 x=0$	M1		Equate to zero (PI) and eliminate their fraction correctly.
	$x=1, \quad x=3$	A1		
	$(x=1), \quad y=-4$	A1		
	$(x=3), \quad y=6 \ln 3-12$ or $\ln 729-12$	A1		Oe for other exact correct values
			5	If M0 then SC1 for ($1,-4$) and/or (3, $6 \ln 3-12)$
ii	$x=5, \quad y=-8$	M1		their $x+4$ and $2 \times$ their y on either of
	$x=7, \quad y=12 \ln 3-24$	A1	2	their 'pairs' All correct: oe exact
	Total		14	
(a)(ii) Condone all terms in any order on one side but must have $=0$ (a)(iii) No credit for any answers not to this accuracy				

Q4	Solution	Mark	Total	Comment
a		M1		$\mathrm{f}(\mathrm{x}) \leq 5, * *<5$
	$\mathrm{f}(\mathrm{x})<5$	A1	2	
bi	$x=5-\mathrm{e}^{3 y}$	M1		Swap x and y at any stage.
	$\mathrm{e}^{3 y}=5-x$			
	$3 y=\ln (5-x)$	M1		Correctly converting to \ln.
	$\left(\mathrm{f}^{-1}(x)=\right) \frac{1}{3} \ln (5-x)$	A1	3	ACF
ii	$(x=) 4$	B1	1	
c	$[\operatorname{gg}(x)=] \frac{1}{2\left(\frac{1}{2 x-3}\right)-3}$	M1		
	$=\frac{1}{\frac{2-6 x+9}{2 x-3}}$	A1		or $\frac{2 x-3}{2-3(2 x-3)}$
	$=\frac{2 x-3}{11-6 x}$	A1	3	
	Total		9	
(b)(i) Must be convinced that final answer is not $\ln \frac{5-x}{3}$ or $\ln (5-x) / 3$				

(a) Use of product rule scores M0
(c) $[(5 \sqrt{x}) \sec x]^{2}$ must be correctly expanded for B 1 to be available.

If the integration has been re-started, then M1 must be for substitution into $a x \tan x+b \ln \sec x$

(a) Coordinates must be stated NOT just indicated on axes, but BOTH correct end points clearly labelled on axes scores SC1.

For first A1 allow: $\int \frac{(6-u)^{\frac{3}{2}}}{\sqrt{u}(6-u)^{\frac{1}{2}}} \times \frac{d u}{-2}$
For second m 1 the substitution must be in the correct order

Q8	Solution	Mark	Total	Comment
a	$\text { LHS }=4\left(1+\cot ^{2} \theta\right)-\cot ^{2} \theta$	M1		Use of a correct trig identity (or identities if using \sin / \cos) to get an expression/equation in a single trig function
	$4\left(1+\cot ^{2} \theta\right)-\cot ^{2} \theta=k$ Or $4 \operatorname{cosec}^{2} \theta-\left(\operatorname{cosec}^{2}-1\right)=k$	A1		All correct, including $=\mathrm{k}$
	$\cot ^{2} \theta=\frac{k-4}{3}$	m1		Correctly isolating trig function - must be tan or cot or cos or sec, from their CORRECT equation
	$\tan ^{2} \theta=\frac{3}{k-4}$	m1		Correct inversion (at some stage) from their equation
	$\left[\sec ^{2} \theta=\frac{3}{k-4}+1\right]$			Must see at least one line of working, be convinced
	$\sec ^{2} \theta=\frac{k-1}{k-4}$	A1	5	AG: no errors seen
b	$\sec ^{2} \theta=4 \text { or } \tan ^{2} \theta=3$ or $\quad \cot ^{2} \theta=\frac{1}{3} \quad$ or $\quad \operatorname{cosec}^{2} \theta=\frac{4}{3}$	B1		PI by expression for eg $\sec x=2$
	$\sec \theta= \pm 2$	M1		$\begin{aligned} & \text { or } \cos \theta= \pm 0.5 \\ & \text { or } \tan \theta= \pm \sqrt{3} \quad \text { or } \sin \theta= \pm \frac{\sqrt{3}}{2} \end{aligned}$
	$\begin{aligned} & (\theta=) \\ & 60,120,240,300,420 \end{aligned}$	A1		Sight of any four of these answers
	$x=22.5^{\circ}, 82.5^{\circ}, 112.5^{\circ}, 172.5^{\circ}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	5	3 correct All correct and no extras in interval (ignore answers outside interval)
	Total		10	

(a) The two $\mathbf{m 1}$ marks can be earned in either order.

There are many different approaches
(b) If working in radians then max mark is B1, M1

[^0]: Set and published by the Assessment and Qualifications Alliance.

[^1]: Set and published by the Assessment and Qualifications Alliance.

[^2]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

[^3]: Set and published by the Assessment and Qualifications Alliance.

[^4]: Set and published by the Assessment and Qualifications Alliance.

[^5]: Further copies of this Mark Scheme are available from: aqa.org.uk

